Introduction to Statistics I

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture

- Distributions of Quantitative Vars
- CLT: Shape/Center/SD, if pop. is normal or $n \ge 30$.
- Symbols: π , μ , σ , \hat{p} , \bar{x} , s

Topic 19: Confidence Intervals for Means

CLT Comparison

	Categorical Var	Quantitative Var		
Sample Statistic	\widehat{p} (proportion)	\overline{x} (mean)		
🞊 Tech Cond: SRS and:	When $n\pi \ge 10$ and $n(1-\pi) \ge 10$	When population is normal or $n \ge 30$		
	or $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$			
Shape of Sampling Distr	Approximately Normal	Normal or Approximately Normal		
Standard Deviation	$\sqrt{\frac{\pi(1-\pi)}{n}}$ or $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$\frac{\sigma}{\sqrt{n}}$ or ?? (see below)		
Center (same as pop)	π	μ		

Recall Confidence Intervals (CIs)

For proportions, we used CLT to develop CIs to capture π , near \hat{p} .

CIs for Proportions: $\hat{p} \pm z^*se$, where \hat{p} is statistic, $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$, and z^* is the critical value, which depends on **confidence level**.

So a CI consists of three parts: A statistic \hat{p} , standard error, and a critical value z^* . Can we do something similar for quantitative variables?

M&Ms Example: Research into factors that motivate people to eat unthinkingly. One study involved 20 students, and invited them to take as many M&Ms from a large bowl as they wanted.

n	Mean	SD	Min	۵	Median	۵ _υ	Max
20	50.15	30.31	7.00	32.35	42.50	62.00	111.00

They got the following data:

Suppose we plan a party. It might be helpful to know:

RQ: What is average # of M&Ms students take from a large bowl?

Population, Var, Var Type, Parameter, Symbol ?

- **Population**: All students
- Var: How many M&Ms did they take?
- Var Type: Quantitative
- **Parameter**: Average # of M&Ms eaten by all students
- Symbol: μ

To create CI for μ , we need three things: (similar to catagorical vars)

- ♦ Statistic,
- ♦ Standard error (*se*), and
- Critical value.

Statistic

Since we're looking at a quantitative var and an average, we need a sample mean. Symbol?

\overline{x}

In the example, the sample mean is 50.15, so the statistic for our CI is $\overline{x} = 50.15$.

Standard Error (se)

In CLT for means, the SD of \overline{x} is: $\frac{\sigma}{\sqrt{n}}$, where σ is the population SD.

However, σ is a parameter, and is thus **unknown**. How can we calculate $\frac{\sigma}{\sqrt{n}}$?

Instead, we look at sample SD, which measures variation we actually observe.

Symbol for the sample SD?

s = 30.31. This measures the spread in these 20 data pts.

If sample is representative, sample SD should be similar to population SD σ .

If we replace unknown param σ with observed SD s, we have standard error: $se = \frac{s}{\sqrt{n}}$.

Recall: to create CI, we need three things:

- Statistic: $\overline{x} = 50.15$
- Standard error: $se = \frac{s}{\sqrt{n}} = \frac{30.31}{\sqrt{20}} \approx 6.78.$
- ♦ And a critical value (was called *z*^{*} for categorical).

Critical Values (*t*^{*})

Recall For *proportions*, critical values (z^*) come from the Normal dist, and the CLT stated that the sampling distr of \hat{p} is normal.

Eg: we use 1.96 for 95% CI, because 95% of pts are within 1.96 SDs of π w/normal distr.

For *means*, the CLT states that the sampling distr of \overline{x} is

- ♦ Normal, w/the
- Mean at μ , and a
- SD of $\frac{\sigma}{\sqrt{n}}$.

Can we use the same critical values? They tell us the # of SDs to get different confidence levels.

SD is $\frac{\sigma}{\sqrt{n}}$, but we don't know actual spread of the population (σ).

Instead, we estimate by substituting in s for σ instead: $se = \frac{s}{\sqrt{n}}$. This has consequences for quantitative critical values.

Let's Experiment: At this link, switch "Statistic" to "Means." Select "Method" called "z with σ ." $(\frac{\sigma}{\sqrt{n}})$

Set: Pop mean (μ) to 50, pop SD to 30. Sample size to 20, confidence level to 95%.

Ask for 1000 intervals, click "Sample."

bit.ly/introstatsdata

What % of the 1000 CIs captured μ ?

Simulating Confidence Intervals

Now repeat with "Method" called "*z* with *s*." $\left(\frac{s}{\sqrt{n}}\right)$ What % of the 1000 intervals capture μ ?

Repeat w/n = 10, then n = 30.

D Take-away: CIs are innacurate (too short) when *n* is small and when we use *s* instead of σ !! What to do?

We could make bigger z^* values. See the following...

t-Distr

t-distr is similar to normal distr, but shorter & fatter.

t-distr critical values (t^*) are slightly bigger than normal ones (z^*) . Acts as penalty for estimating SD from sample.

How much penalty do we need? Depends on the sample size.

Degrees of Freedom

Higher sample size \Rightarrow More accurate estimate of SD.

So, w/higher sample size, we need less penalty than w/smaller sample size.

There's a *t*-distr for every sample size. They are labeled by their **degrees of freedom** (df).

$$df = n - 1.$$

Critical value is denoted t^* or t^*_{n-1} , with df in subscript.

Back to M&Ms CI

Recall for M&Ms data set, we found:

	Mean	SD	Min	۵	Median	۵	Max
20	50.15	30.31	7.00	32.35	42.50	62.00	111.00

What df should we use?

n = 20, so df = 20 - 1 = 19.

 $t_{19}^* = 2.093.$

If we want 95% CI, we find:

t-dist Calculator Statdistributions.com/t/

bit.ly/introstatsdata

two tails, and *p*-value = 1 - 0.95 = 0.05

CIs for Means

Recall, CIs have form: statistic \pm (critical value) \times (standard error).

So, CI is: $\overline{x} \pm t_{n-1}^*(\frac{s}{\sqrt{n}})$

So, to create CI for M&Ms:

Statistic: $\bar{x} = 50.15$, SD: $se = \frac{s}{\sqrt{n}} = \frac{30.31}{\sqrt{20}} \approx 6.778$, Critical value: $t^* = 2.093$.

So 95% CI for μ is:

 $\overline{x} \pm t_{n-1}^*(\frac{s}{\sqrt{n}}) = 50.15 \pm 2.093(6.778) = 50.15 \pm 14.19$

(35.96,64.34). Meaning (in context)?

We're 95% confident that mean # of candies chosen by students is between 35.96 & 64.34.

Tech. Conds for CI:

- Simple Random Sample
- Normal population $OR \ n \ge 30$.

Activity 19-2

Another Example: Take a sample of students, ask them how many hours of sleep they got last night. You find a sample mean of 6.6 hrs and sample SD of 0.825.

Task: make 95% CI for mean # of hrs of sleep.

Case 1:
$$n = 10$$
, $\overline{x} = 6.6$, $s = 0.825$.

se, *df*, CI ??

$$se = \frac{s}{\sqrt{n}} = \frac{0.825}{\sqrt{10}} \approx 0.2609.$$

df = 9

$$\overline{x} \pm t^* \left(\frac{s}{\sqrt{n}}\right) = 6.6 \pm 2.262(0.2609)$$

Case 2: n = 30, $\bar{x} = 6.6$, s = 0.825

se, *df*, CI ??

$$se = \frac{s}{\sqrt{n}} = \frac{0.825}{\sqrt{30}} \approx 0.1506$$

df = 30 - 1 = 29

 $t^* = 2.045$

$$\overline{x} \pm t^* \left(\frac{s}{\sqrt{n}}\right) = 6.6 \pm 2.045(0.1506)$$

So, CI is (6.292, 6.908).

Sample Size Considerations

When sample size is *smaller*, the resulting CI is *wider* for two reasons:

- Standard error is larger, and
- ♦ Critical value *t*^{*} is higher.

So *larger* samples sizes *reduce* the width of CI for both reasons.

What did we learn?

- CIs for quantitative vars
- Standard error (quant): $se = \frac{s}{\sqrt{n}}$
- Degrees of freedom (*df*), Critical values t^* or t^*_{n-1}
- ♦ *t*-distribution

