Introduction to Statistics I

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture

• How to apply steps of significance test to concrete examples

Topic 14: Sampling Dists for Means of Quantitative Vars

Previously we looked at sampling dist's and CLT with **categorical** vars. How about **quantitative** ones?

Goal: How to use a quantitative statistic to estimate the parameter μ ?

For our statistic, we'll focus on sample means (\bar{x}) (could also look at sample median, range, IQR, SD, etc).

We describe distr of the data within a sample by giving:

- ► Shape normal, skew?
- Center usually described by the mean \bar{x} , and
- ► **Spread** usually described by SD (*s*).

Calculating SD of a sample by finding distance of each M&M's diameter to

As we did with catagorical sample \hat{p} 's, for quantitative vars, we ask how do the statistics \bar{x} vary from sample to sample?

Distr of Pop. values.

Distr of sample \bar{x} 'S.

n = 203, mean = 43.024 median = 43.5, stdev = 29.259

Sample

Sampling: We take a sample of 40 countries.

 $\sigma = 29.26.$

Suppose we let our population be all 203 countries.

For each country, we can record the % of people w/internet access.

What symbols do we use for mean/SD from this sample? Are these parameters or statistics?

```
Statistics: \bar{x} = 41.97, s = 34.81.
```

Questions to Explore:

Example: Internet Access

 $\mu = 43.02,$

Parameters μ, σ from graph?

- ► This is just one sample. What happens when we sample again?
- How does the sample mean \overline{x} relate to population mean μ ?
- If we take samples repeatedly, does \overline{x} vary around μ the same way (as when using catagorical vars) that \hat{p} did around π ?
- And what role does the SD play in this relationship?

Let's experiment: On this applet choose "Percent w/Internet Access-2e,"

n = 40, then generate samples.

What does shape look like? Different from population distr above? SD? What if n = 200?

bit.ly/introstatsdata

Applet: Sampling Distribution for a Mean

Sampling Distribution

We take repeated samples of size *n* from a population with mean μ and SD of σ .

Each time, we calculate each sample's mean \overline{x} . What does the distr of these \overline{x} 's look like?

CLT: sample means \rightarrow sample mean \overline{x} 's distr

- ► Shape: Approximately normal.
- Center: at the population mean μ .
- ▶ **Spread**: SD decreases as *n* increases.

Sampling distr is approx normal, even if population distr isn't!

Central Limit Theorem (for quantitative var)

Suppose samples of size *n* are taken from a population w/population mean μ and SD σ .

The sampling distr of sample means \overline{x} will have:

- ► Shape approximately normal (exactly so if population shape is normal).
- ▶ **Mean** at *μ*.
- ► SD $\frac{\sigma}{\sqrt{n}}$.

Two Tech Conds: CLT holds if:

- ► Simple Random Samples (SRS) are taken, and
- ▶ Population is normal, **OR** as long as sample size is "big enough" ($n \ge 30$).

Body Temperatures

Body temperatures of healthy adults follow a Normal distr w/mean of $97.9^{\circ}F$ and SD of 0.5° . Are 97.9 & 0.5 parameters or statistics?

Symbols?

$$\mu = 97.9, \qquad \sigma = 0.5$$

What's the probability of finding a single adult w/temp above 98°?

$$z = \frac{\bar{x} - \mu}{\sigma} = \frac{98 - 97.9}{0.5} = 0.2.$$

$$P(x > 0.2) = 0.4207$$
 (from calculator.net: "z-score")

Instead, let's do many larger samples. What if we took SRS's w/n = 130? Does CLT apply?

Yes, "SRS" and "temps follow a Normal distr" (and $n = 130 \ge 30$).

What is the sampling distr: shape/center/spread?

Recall: $\sigma = 0.5$, $\mu = 97.9$ (from population)

Sample distr has:

- ► Shape: Normal.
- Center: At population mean $\mu = 97.9$.
- Spread: SD is $\frac{\sigma}{\sqrt{n}} = \frac{0.5}{\sqrt{130}} \approx 0.04385.$

What's the prob of a SRS of 130 people having sample mean above 98°?

 $z = \frac{\bar{x} - \mu}{s} = \frac{98 - 97.9}{0.04385} \approx 2.281.$

P(x > 2.281) = 0.01127

(from calculator.net: "z-score")

Probability of a single adult having body temp above 98° is 0.4207.

Probability of a **SRS of** 130 people having sample mean above 98° is 0.01127. (Woah!)

Statistic Distr Spread vs n

Increase sample size $(n) \Rightarrow$ spread of statistics (\bar{x}) decreases.

Thus, the \overline{x} 's are more likely to be near μ as *n* increases.

98.5

99.0

Note that we are using the word "mean" in 3 different ways:

- Population mean μ
- Sample mean \overline{x}
- Mean of the sample means. Also known as the mean of the sampling distr.

CLT Comparison

	Categorical Var	Quantitative Var
Sample Statistic	\widehat{p} (proportion)	\overline{x} (mean)
🞊 Tech Cond: SRS and:	When $n\pi \ge 10$ and $n(1-\pi) \ge 10$	When population is normal or $n \ge 30$
	or $n\widehat{p} \ge 10$ and $n(1-\widehat{p}) \ge 10$	
Shape of Sampling Distr	Approximately Normal	Normal or Approximately Normal
Standard Deviation	$\sqrt{\frac{\pi(1-\pi)}{n}}$ or $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$\frac{\sigma}{\sqrt{n}}$ Or (see next lesson)
Center (same as pop)	π	μ

Activities: 14-1

What did we learn?

- Distributions of Quantitative Vars
- CLT: Shape/Center/SD, if pop. is normal or $n \ge 30$
- Symbols: π , μ , σ , \hat{p} , \bar{x} , s

