Introduction to Statistics I

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture

- ♦ Confidence Intervals (CI)
- Standard error, se
- Critical values z^*
- ♦ Confidence levels (95%, etc)
- Margins of error, *moe*

Topic 17: Tests of Significance: Proportions

So you've got a hypothesis, and you've sampled a population to prove it. Let's put your hypothesis on trial!

$$\hat{p} = \frac{80}{124} = 0.645.$$

Parameter or **statistic**?

 $\hat{p} = 0.645$ is the statistic for this sample. But, this doesn't mean that 0.645 is the proportion π of ALL people who turn right.

And recall the original question was if more than ¹/₂ turn right.

Is $\hat{p} = 0.645$ enough above 0.5 to give evidence that $\pi > 0.5$?

Siginificance Test

A significance test is a six-step procedure to test the likelihood of a hypothesis.

Putting our hypothesis on trial, where the sample & it's statistic are evidence.

Is the evidence strong enough to support the hypothesis?

We will go over...

Six Steps of Significance Testing

- Lay out the problem
 State hypotheses
 Check technical conditions
 Calculate test statistic (z-score)
 Calculate p-value
- 6. Make a decision and write a conclusion

Define the:

- Parameter of interest (what symbol)?
- Variable to collect?
- Population to sample from?

Example RQ: Do more than 1/2 of couples turn right when kissing?

Parameter: Proportion of all couples who turn right when kissing. Symbol: π

Variable to collect: Does each couple turn right when kissing? Population: All couples.

Step 2: State Hypotheses

In a significance test, there are two hypotheses!

Null Hypothesis (H_0) : current view of parameter (eg, assumed innocent null \bigcirc)

Alternative Hypothesis (H_a) : alternative view of parameter we're hoping to show (eg, guilty null

).

For null (H_0), parameter π is equal to some value π_0 , denoted: H_0 : $\pi = \pi_0$.

Value π_0 could be any number between 0 and 1.

From Example: RQ - Do more than ¹/₂ of people turn right when kissing?

Null (H_0): $\frac{1}{2}$ of people turn right: H_0 : $\pi = 0.5$.

Alternative (H_a) : asserts π is either:

- Less than π_0 ,
- More than π_0 ,
- Or not equal to π_0 .

Alternative hypothesis looks like one (and only one) of the following:

 $H_a:\pi<\pi_0,$ $H_a: \pi \neq \pi_0.$ $H_a:\pi>\pi_0,$

Back to Example (RQ): Do more than ½ of people turn right when kissing? Hypotheses?

 H_0 : $\pi = 0.5$ and $H_a: \pi > 0.5$.

One Sided vs Two Sided Tests

When significance tests use an alternative hypothesis of:

OR $H_a: \pi < \pi_0$, $H_a:\pi>\pi_0$ it's called a one-sided test.

If sig. test uses H_a : $\pi \neq \pi_0$, it's called a **two-sided test**.

Step 3: Check Technical Conditions

These are conditions required by CLT.

- ► Was data collected in unbiased way?
- ► Is sample size large enough? CLT demands $n\pi \ge 10$ and $n(1 \pi) \ge 10$.

I But we don't know π !!

However, we have hypothesized value π_0 from H_0 . So, we use that instead (note we don't use \hat{p}).

Back to Example: Sample Size Check.

Researchers watched 124 couples.

Null: H_0 : $\pi = 0.5$.

So: $n\pi_0 = 124(0.5) = 62 \ge 10$ and \checkmark

 $n(1 - \pi_0) = 124(1 - 0.5) = 62 \ge 10.$

Sample was also random, so technical conditions hold. \checkmark

Step 4: Calculate Test Statistic (Z)

Test statistic measures how far observed statistic \hat{p} is from hypothesized parameter value π_0 .

If \hat{p} is "far" from π_0 , then it's likely H_0 is false.

If \hat{p} is "near" to π_0 then it's possible H_0 is true.

Test Statistic Derivation

What's "far" or "near" is context dependent. However, we've seen how to create a consistent measure of distance by measuring it in terms of SDs. That is, the *z*-score.

We have a formula for SD w/a sampling distr: $\sqrt{\frac{\pi(1-\pi)}{n}}$.

We don't know π , so we'll use hypothesized π_0 .

Note $\hat{p} - \pi_0$ is how far statistic \hat{p} is from π_0 .

So, test statistic $z = \frac{\hat{p} - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$ is how far \hat{p} is from π_0 in terms of SDs.

The larger z is, the less likely π_0 is to be correct.

Example: We have n = 124, $\hat{p} = 0.645$, and $H_0 : \pi = 0.5$.

What is the SD?

$$s = \sqrt{\frac{\pi_0(1-\pi_0)}{n}} = \sqrt{\frac{0.5(1-0.5)}{124}} = 0.04490.$$

What is the *z*-score (test statistic)?

$$z = \frac{\hat{p} - \pi_0}{s} = \frac{0.645 - 0.5}{0.04490} = 3.229.$$

So our \hat{p} of 0.645 is 3.23 SDs away from our hypothesized π_0 of 0.5. Is this enough?

Step 5: Find the *p*-value

Instead of just looking at distance, we can ask:

If H_0 is correct, what's the probability p of observing this \hat{p} (or something more surprising)?

This probability *p* is called the *p*-value.

Back to Right-Kissing Example: Recall $\pi = 0.5$ and n = 124.

What's probability of observing sample proportion \hat{p} of 0.645 or higher?

"Or higher" because our alternative hypothesis is H_a : $\pi > 0.5$.

We already know *z*-score for 0.645 is 3.23. So, probability *p* of 3.23 or higher?

z-score calculator for P(Z > z) is 0.0006190.

Probability of observing $\hat{p} = 0.645$ or higher, assuming $\pi = 0.5$ and n = 124, is 0.00062. (0.062%)

p-value Derivation

The probability p that we calculate depends on alternative hypothesis H_a .

- If $H_a: \pi < \pi_0$, then we want probability of observing \hat{p} or something lower.
- If $H_a : \pi > \pi_0$, then we want probability of observing \hat{p} or something higher.
- If H_a : π ≠ π₀, then we want probability of observing something at least as far from π₀ as p̂ is, but in either direction (more extreme than p̂).

2-sided p-value

Step 6: Make Decision & Write Conclusion

We first need to make a **decision**: Have we evidence that alternative H_a is true (eg, guilty null \mathbb{R})?

Or do we not have enough evidence (eg, innocent null [).

U We never can conclude null (H_0) is true based on our data.

This is because H_0 is an equality statement, and statisticians can't prove things are equal.

Then, write a conclusion in context, using no statistical symbols, about your decision.

Decision

Our *p*-value and test statistic (z) describe the strength of our evidence.

• Large test statistic z & small p-value indicate \hat{p} is far away from π_0 .

Stat \hat{p} is unlikely to be observed if H_0 is true. So, it's unlikely H_0 is true, and we **reject the null hypothesis**.

Small p (purple), large z (black line), H_0 is grey line, p is red line

- -3 -2 -1 0 1 2 3Large p, small z
- Small z & large p-value indicate \hat{p} is relatively close to π_0 .

Stat \hat{p} is likely to be observed if H_0 is true. So \hat{p} is consistent w/ H_0 . Thus H_0 may be true, so we fail to **reject the null hypothesis**.

- Small *p*-value, reject H_0 and conclude alternative H_a .
- Large *p*-value, fail to reject H_0 and fail to conclude H_a . (but don't conclude H_0 is true)

But how small is small enough?

Significance Level

Before beginning the experiment, we need to decide how small the p-value would need to be for us to reject H_0 .

This *p*-value cut-off is called the **significance level** α .

In most cases, $\alpha = 0.05$.

If *p*-value $< \alpha$, reject null H_0 and conclude alternative H_a . If *p*-value $> \alpha$, fail to reject H_0 and fail to conclude H_a .

Small p, then REJECT!

Example: We observed $\hat{p} = 0.645$ out of 124 couples while testing the hypotheses $H_0 : \pi = 0.5, \quad H_a : \pi > 0.5.$ We found test statistic of z = 3.23 and p-value of 0.00062. If significance level is $\alpha = 0.05$ (the default), what decision should we make? Since p = 0.00062 is less than $\alpha = 0.05$, we **reject the null hypothesis** H_0 . We conclude the alternative hypothesis H_a , that π is more than $\pi_0 = 0.5$.

Conclusion (in context): more than half of couples turn right when kissing.

In short....

Six Steps of Significance Testing

1. 1	Lay out problem	Å
2 .	State hypotheses	HoHa
3.	Check technical conditions	K
4.	Calculate test statistic (z-score)	Q
5.	Calculate <i>p</i> -value	\bigwedge
6.	Make a decision and write a conclusion	

Activities: 17-2

What did we learn?

• Six steps of significance test

