Introduction to Statistics I

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture

- Sampling distr of the sample proportions \hat{p}
- Spread (SD) of sampling distr: $\hat{s} = \sqrt{\frac{\pi(1-\pi)}{n}}$
- CLT: shape/center/ \hat{s} . Holds if $n\pi \ge 10 \& n(1-\pi) \ge 10$.

Topic 16: Confidence Intervals for Proportions

One can't always do repeated sampling. How much do you trust a single sample?

Example: In an August poll, Mike Lawler was leading Mondaire Jones for representative of NY's 17th district. The survey asked 433 likely voters: "If the election were today, who would you vote for?"

43% Lawler 38% Jones

How accurate was this poll? After all, it only surveyed 433 voters. **RQ**: Could it be that Jones *actually* had 50% favorability? (could he win?)

Population/Parameter π /Sample/Statistic \hat{p} ?

Population: District 17 voters. **Parameter**: Proportion of District 17 voters who would vote for Jones. **Sample**: 433 Likely Voters. **Statistic**: Proportion of the 433 NY voters in 17th district who say they would vote for Jones: $\hat{p} = 0.38$.

Simulating Polls

If Jones actually has 50% favorability, is it possible to get a sample proportion \hat{p} of 0.38 w/a sample size of 433?

Let's simulate it. Go to link: "Edit Proportion" $\rightarrow 0.5$

Set "*n* =" 433

"Generate 1000 Samples"

bit.ly/introstatsdata
Applets: Sampling Distr

Set "left tail" to 0.38.

Population Parameter

The simulation showed that if the true population parameter π is 50%,

it's not reasonable to think Jones would get 38% from a sample of 433 people.

We conclude from this poll that Jones very likely did not have 50% of vote. What parameter numbers π could more reasonably give us results like we saw in this poll?

Can we get a range of reasonable values for π just from $\hat{p} = 0.38$? (Back to the applet for simulation. Calculate area under curve for \hat{p} or more extreme. Must choose either left/right tail.)

Not 50%. But maybe 40%. And maybe 35%. But not 30%.

The range of likely values for π , based on observed \hat{p} , is called a **Confidence Interval** (CI).

Cl Theory: For any \hat{p} , we can generate a list of likely π 's for which it's reasonable to get the statistic \hat{p} we observed. How to do this w/out running simulations for every possible π ?

Recall **CLT** describes relationship between π and \hat{p} (if $n\pi \ge 10 \& n(1 - \pi) \ge 10$):

 \hat{p} distr is approx. normal, mean is at π , SD is: $\hat{s} = \sqrt{\frac{\pi(1-\pi)}{n}}$.

In particular, SD from CLT tells us average distance of the \hat{p} from π .

Also recall the **empirical rule**: 68% of data pts are within 1 SD of mean, 95% within 2 SDs, nearly all within 3 SDs. So, in 95% of samples, the statistic \hat{p} is at most 2 SDs away from π .

Thus, for each sample \hat{p} , if we add/subtract 2 SDs, then for about 95% of samples this interval will contain π .

This is a 95% confidence interval (CI).

Minor Obstacle

Formula for SD is: $\hat{s} = \sqrt{\frac{\pi(1-\pi)}{n}}$. But this relies on unknown parameter π (!?!).

So if we want a CI, we need another way to calculate \hat{s} .

Standard Error (*se*): Is an approximation of \hat{s} given in CLT.

Replace the unknown parameter π with known statistic \hat{p} . So, $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$.

Similarly, in the technical requirements. So $n\hat{p} \ge 10 \& n(1-\hat{p}) \ge 10$.

Therefore, the **CI Formula** is: $\hat{p} \pm z^*(se)$ where \hat{p} is sample proportion,

 z^* is the desired # of SDs (called the **critical value**), and $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$. So, CI is $(\hat{p} - z^*(se), \hat{p} + z^*(se))$.

Recall our Example:

 $n = 433, \quad \hat{p} = 0.38.$

So SD is: $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.38(1-0.38)}{433}} \approx 0.023.$

Thus the 95% CI is $(\hat{p} - z^*(se), \hat{p} + z^*(se)) = (0.38 - 1.960(0.023), 0.38 + 1.960(0.023)) = (0.335, 0.425).$

The 99% **CI** is $(\hat{p} - z^*(se), \hat{p} + z^*(se)) = (0.38 - 2.567(0.023), 0.38 + 2.567(0.023)) = (0.321, 0.440).$

Actual election results: Lawler 50%, Jones 44%.

Critical Values z*

We can't usefully create CIs with 100% guarantee that CI contains π , because \hat{p} varies randomly.

However, using CLT and the normal dist, we know 95% of \hat{p} 's are within 1.96 (not exactly 2) SDs from π .

If we build CIs using $z^* = 1.96$ SDs, then 95% of CIs will contain π . So, 1.96 is called the **critical value** for 95%.

Confidence Levels

We can increase the % of CIs that contain π by changing critical value z^* .

If wider, it'll contain π more often. If narrower, it'll contain π less often.

Percent of time CIs contains π is called the **confidence level**.

Confidence Levels and Critical Values:	Confidence Level	Critical Value (z^*)
	80%	1.282
	90%	1.645
	95%	1.960
	99%	2.567
	95% 99%	1.960 2.567

"95% CI" means that 95% of CIs we make using this procedure for different samples contain π .

Confidence level (95%) is our accuracy rate. For any given CI, we've no way of knowing if that particular CI contains π . But we have an accuracy rate of 95%.

Margin-of-Error (*moe*): Max distance we expect \hat{p} to be from π is known as margin-of-error. $moe = z^*(se)$.

It's also the **half-width** of the CI.

Many polls report their results w/statistic \hat{p} and moe.

Activities: 16-2

Day 2 - Topic 16: Confidence Intervals for Proportions

Return to Lawler/Jones Poll Example: Change Research poll reports Jones with 38% w/moe of 4.5 percentage points. What's the 95% CI?

Calculate CI as: $\hat{p} \pm moe$. So, $0.38 \pm 0.045 = (0.335, 0.425)$.

So, we're 95% confident that between 33.5% and 42.5% of voters will vote for Jones.

95% confidence means that "if we ran this poll many times, we belive 95% of the resulting CIs would contain π ."

Let's make 95% CI for Lawler's statistic.

Recall: 43% of likely voters said they planned to vote for Lawler.

$$n = 433$$
, $\hat{p} = 0.43$, $z^* = 1.96$

$$se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.43(1-0.43)}{433}} \approx 0.024.$$
 (standard error)

 $moe = z^*(se) = 1.96(0.024) \approx 0.047.$

95% CI: $\hat{p} \pm moe = 0.43 \pm 0.047 = (0.383, 0.477).$

We're 95% confident the % of voters who'll vote for Lawler is between 38.3% and 47.7%.

Effect of Sample Size on Cl

Let's try different sample sizes with $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ and $\hat{p} = 0.48$, realling that half-width is: $moe = z^*(se)$.

Sample Size (n)	Standard Error (se)	
1000	0.016	
433	0.024	
100	0.046	

Cls for $\hat{p} = 0.48$ and various sample sizes

As sample size increases, se decreases. So CIs will be narrower.

(Why? Imagine the sample size were nearly entire population. What would each \hat{p} be? Would they vary much?)

Narrower CIs are more useful, so larger sample sizes are beneficial, because they increase accuracy.

Another way to change the half-width $z^*(se)$ is to change confidence level, and thus change z^* .

This decreased confidence narrows the CIs.

Confidence Levels and Critical Values:

Confidence Level	Critical Value (z^*)
80%	1.282
90%	1.645
95%	1.960
99%	2.567

Demanding higher confidence results in wider CI.

So if we want more confidence, we must be less precise (or increase sample size).

Activities: 16-X

bit.ly/introstatsdata

Applets: Simulating Confidence Intervals

What did we learn?

- ♦ Confidence intervals (CI)
- Standard error, se
- ♦ Critical values
- ♦ Confidence levels
- Margins of error, *moe*

