Introduction to Statistics I

Instructor: Jodin Morey moreyj@lemoyne.edu

- Five Number Summary (FNS)
- ♦ Box plot
- ♦ Outliers ●●● ●● O
- ♦ Modified Box Plot

Topic 12: Normal Distributions

What are normal distributions?

Example: Body Temperatures

n = 130I take my temperature, and it's 97.5° or 99°. Are these concerning?

- ♦ % in this sample below 97.5°?
- ♦ % in this sample above 99.0°?
- Is this a histogram of a sample or the population (people of the world)?
- How do we estimate proportions in a **population** when we have proportions from a **sample**?

Using exact sample numbers leads to **overfitting**, where we assume the population behaves identically to our sample. Instead, let's fit a mathematical model.

Body Temps w/a Mathematical Model

Diabetes Diagnosis vs Age w/Mathematical Model

The curve is a function/model that "fits" the data.

Normal Curve

The Normal Dist. was discovered in 1809; in an attempt to locate the dwarf planet Ceres.

Normal Distribution

Ceres

The only difference between the body temps curve, and a normal distr is that to generate a normal distr, you must scale the curve so that the area under the curve is equal to one.

Percent of people in this sample below 97.5°?

Using a Normal Model

To draw a normal curve, we need mean and SD.

Mean is 98.24. SD is 0.734.

So (using applet), area under the curve below 97.5 is 0.157.

Interpreting Probabilities

What does this 0.157 mean?

• $\approx 15.7\%$ of body temps are less than 97.5.

- Repeated sampling would find $\approx 15.7\%$ of people in each sample would have body temps less than 97.5.
- Probability that randomly selected person has temp < 97.5° is $\approx 15.7\%$. Or, $P(\text{temp} < 97.5^\circ) = 0.157$.

bit.ly/introstatsdata

Applets: Normal Dist Generator

Conclusion:

- Probability of observing someone w/diastolic < 54 is 0.157.
 P(BP < 54) = 0.157.
- Proportion of population w/diastolic < 54 is 0.157.
 Eg: 15.7% of people have diastolic BPs below 54.

z-scores

Temps & BP

Recall: Probability of observing temp < 97.5 is 0.157. Probability of observing diastolic < 54 is 0.157. Why are these both the same??

Recall: Body temp mean is 98.24 & SD is 0.734. *z*-score for 97.5?

$$z = \frac{97.5 - 98.24}{0.734} \approx -1.01$$

Recall: BP mean is 68 & SD is 13.9. *z*-score for 54?

$$z = \frac{54-68}{13.9} \approx -1.01.$$

Observations w/same z-scores give same probabilities, regardless of context.

We use *z*-score calculators to calculate probabilities, (in the old days, *z*-tables).

Standard Normal: normal dist. with mean 0 and SD of 1.

Probability associated w/z-score found by using std normal probability table.

Table value (TV) for that z-score gives probability of observing that value or lower.

Incomplete z-score table

To find probability of observing less than a certain value *x* using normal model:

- Find the *z*-score
- Use *z*-score calculator to discover area to the left or right of the *z*-score.

bit.ly/introstatsdata Calculators: z-score calculator

High Birthweights

Mid-Weight Babies

The probability that a randomly selected baby weighs between 3000 and 4000 g? Recall the mean is 3300, SD is 570.

Need: *z*-scores to find *P*(birthweight < 3000).

Also, *z*-scores to find P(birthweight < 4000).

How to find probability of being between them?

$$z_{3000} = \frac{3000 - 3300}{570} \approx -0.5263.$$

Area to the left:

0.2993.

The *z*-score for 4000?

 $z_{4000} = \frac{4000-3300}{570} \approx 1.2281.$ Area to the left: 0.8903

So, probability of between 3000 g and 4000 g:

0.8903 - 0.2993 = 0.591

Proportion of babies born w/weights between 3000 and 4000 g is 0.591.

Putting it all together, when calculation probabilities:

- ♦ Calculate *z*-score
- Look-up z-score area (either to the left or right)
- If probability is between two scores, calculate the z-scores and areas to the left, and find the difference (larger minus smaller).

Activities: 12-2

bit.ly/introstatsdata

Calculators: *z*-score calculator

What did we learn?

- Normal distr for each mean and SD.
- Probability of observing data pt less/greater than some other value
- ♦ *z*-scores, areas under normal curves

