
Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture
 Change of Vars in 1D

10 - Inequalities and Limit Theorems
What should we do if we can’t calculate a probability or expectation exactly? Simulate it, bound it, approximate it.

 Simulate it using random computer models. (Monte Carlo. No provable guarantees)

 Bound it using inequalities. (§10.1. Provable guarantees! The desired quantity is in a certain range)

 Approximate it using limit theorems. (§10.2/§10.3, provides probabilities the desired quantity is in any particular range)

§10.1 - Inequalities

Recall: if X and Y are uncorrelated, then EXY   EX EY .
But in general, calculating EXY  (like we do w/covariance) requires knowledge of the joint distr of X and Y.

If we don’t know it, the Cauchy-Schwarz inequality lets us bound EXY  in terms of the
marginal second moments EX 2 and EY 2.

Thm (Cauchy-Schwarz): For any X and Y w/finite variances, |EXY|  EX 2EY 2 .

Recall from calculus: x  y  x y cos. Or equivalently: x  y  x  x y  y cos  x  x y  y  (for

0    90)
(dot product is playing the role of expectation in this version of Cauchy-Schwarz)

Proof. For any t, we have: 0  EY  tX 2  EY 2  2tEXY   t2EX 2.

Where did t come from? The idea is to introduce t to get a continuous function.



This allows us to take a derivative w/respect to t to find extremas of the expression.
This will allow us to find the tightest bound possible for EXY .

Differentiating the RHS with respect to t and setting it equal to 0, we find an extremum (a minimum, since the

second derivative 2EX 2 is positive) when t  EXY

EX 2
, resulting in the tightest bound.

Substituting in this value of t, we have: 0  EY 2  2 EXY

EX 2
EXY   EXY

EX 2

2
EX 2

0  EX 2EY 2  EXY 2 (simplifying)

EXY 2  EX 2EY 2 (rearranging)

|EXY |  EX 2EY 2 , (square rooting)

we have the Cauchy-Schwarz inequality. 

Jensen: an Inequality for Curvature

For nonlinear functions g, EgX  may be very different from gEX .

If g is either a convex or a concave function, Jensen’s inequality tells

us exactly which of EgX  and gEX  is greater.

Often we can take the second derivative to test for convexity/concavity.

Thm (Jensen’s Ineq): Given X, if g is convex, then EgX   gEX . If g is a concave, then EgX   gEX .

The only way equality can hold is if there are constants a,b such that gX   a  bX w/prob 1.

Ex: Let X be discrete taking on values a,b with prob 1
2 each. Let g be convex or concave. Then:

g is convex, so avg of ga,gb

is greater than gEX.

g is concave, so avg of ga,gb

is less than gEX.

Proof of thm: If g is convex, then all lines that are tangent to g lie below g (see figure).

In particular, let  : EX , and consider the tangent line at the point ,g.



Denoting this tangent line by a  bx, we have gx  a  bx for all x by convexity, so gX   a  bX.

Taking the expectation of both sides, EgX   Ea  bX   a  bEX   a  b  g  gEX , as desired.

If g is concave, then h  g is convex, so we can apply what we just proved to h to see that
the inequality for g is reversed from the convex case.

Lastly, assume that equality holds in the convex case. Let Y  gX   a  bX.

Then Y is nonnegative w/EY   0, so PY  0  1 (even a tiny nonzero chance of Y  0 occurring would make EY  0).

So equality holds if and only if PgX   a  bX  1.

For the concave case, we can use the same argument with Y  a  bX  gX . 

Ex (Jensen’s Inequality): Let gx  x2. What does Jensen say about gEX , EgX ?

Solution: Since g is convex (its second derivative is 2), Jensen’s inequality says EX 2  EX 2.

Note, we can verify this since we already know variances are nonnegative: EX 2  EX 2  0.

A few examples:

 E|X |  |EX |,

 E 1
X  

1
EX 

, for positive X,

 ElnX   lnEX , for positive X.

Ex (Which is Larger?): Given positive X and Y. Which is larger?

a. EX 3 or EX 3

Since gx  x3 is convex when x  0, then EX 3  EX 3.

b. eEX or Eex

Since gx  ex is concave, then Eex  eEX.



Markov, Chebyshev, Cherno: bounds on tail probabilities

The following inequalities provide bounds on the prob of a rv taking on an "extreme" value in the right or left tail of a distr.

Limit prob of insurance payout X

Thm (Markov’s Ineq). For any X and constant a  0, P|X|  a  E|X |
a .

Proof. Let Y  |X |
a . Then Markov can be rewritten: P |X |

a  1  E|X |
a  1

a E|X|  E |X |
a  EY.

So, we need to show: PY  1  EY.

Note: IY  1  Y. Why?

First, notice 0  |X |
a  Y. Now there are two options: IY  1  0 or IY  1  1.

If IY  1  0 then since Y is nonnegative, we have IY  1  Y.

Next, if IY  1  1 then IY  1  1  Y (because the indicator says so).

Taking the expectation of both sides, we have PY  1  EY. 

For an intuitive interpretation, let X be the income of a randomly selected individual from a population.

Taking a  2EX, Markov’s inequality says: PX  2EX  1
2 . (no need for || since income is positive)

That is: it’s impossible for more than half the population to make at least twice the average income.

If we put some conditions on X, we can get an even better estimate.

Thm (Chebyshev). Let X have mean  and variance 2. Then for any a  0, P|X  |  a  2

a2
.

Proof. By Markov’s inequality, P|X  |  a  PX  2  a2  EX2

a2
 2

a2
. 



Thm (Chernoff). For any X and constants a  0 and t  0, PX  a  EetX

eta
.

Proof. Note the transformation gx  e tx is invertible and strictly increasing.

So by Markov’s inequality, we have PX  a  Pe tX  e ta  EetX

eta
. 

Chernoff has two very nice features:

 RHS can be optimized over t to give the tightest upper bound.

 If MGF of X exists, then the numerator in the bound is the MGF,
and some of the useful properties of MGFs can come into play.

A bound is not an approximation! PX  a  EetX

eta
, but PX  a might be a lot less than EetX

eta
.

Harvard Video: youtube.com/watch?vUtXK_EQ3Pow&listPL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index28

§10.2 - Law of Large Numbers (LLN)

If you are sampling from some distr, and you want to know how many samples you should take before you can trust
your sample mean to accurately represent the distr’s mean, we will need some new tools.

For iid X1,X2, . . . ,Xn w/mean  and finite variance 2, let X n 
X1X2...Xn

n be the sample mean of X1 thru Xn.

To describe the behavior of X n as the sample size n grows, we introduce:
the Law of Large Numbers (LLN) and the Central Limit Thm (CLT).

Observe the expected value of X n is :

EX n  1
n EX1  X2 . . .Xn  1

n EX1 EXn  .

And VarX n  1
n2
VarX1 VarXn  2

n .

Var decreases as n increases

An individual sample mean X n will usually not equal .
However, we can ensure a sample’s mean will be close to  by increasing sample size.



To understand the following theorem, imagine taking an infinite number of samples X i from a larger population (individuals
from the world), and writing down their height s 1 : X1,X2, . . .   72,80, . . . .

Now imagine doing it again.
This 2nd time, due to randomness, you will obviously not choose the same people in the same order:
s 2  X1,X2, . . .   83,56, . . . .

Now imagine all the different infinite vectors you can create this way. This is our sample space S  
s 1,

s 2, . . . for rv X n
s.

Notice you could theoretically randomly get s  X1,X2, . . .   65,65,65, 65,65, . . . , but the prob is zero (because the vectors are
infinite).

Thm (Strong Law of Large Numbers, SLLN). The sample mean X n converges to the true mean  pointwise, w/prob 1.
Recalling that rvs are functions from the sample space S to R. This form of convergence says that X n

s   for each
infinite vector s  S, except the convergence is allowed to fail on some set B0  S of exceptions, as long as PB0  0.
In short, PX n    1.

The confusing part of this thm is the bit about pointwise convergence.

Ex (Pointwise Convergence): Imagine flipping a coin an infinite number of times. . . .

Now think about all the different ways this could turn out. Calling heads 1, and tails 0.

The sample space could include vectors like s 1  01110001101001101110011011110. . .  and
s 2  10111000110100100111000001. . . , and infinitely many more.

When you flip your coin an infinite # of times, you end up generating one of these s from the sample space.

SLLN says that with prob 1, X n
s  1

2 .

You might say to yourself, but what if I get the following: s 0  0000000000000. . .  (all tails), and therefore X n
s  0.

SLLN admits to this possibility, but tells us that s 0  B0, and therefore the probability of this occurring is zero.

Thm (Weak Law of Large Numbers,WLLN): For all   0, P|X n  |    0 as n  .
(This form of convergence is called convergence in probability.)

Proof. Fix   0. Then, by Chebyshev’s inequality, P|X n  |    2

n2
.

As n  , the RHS goes to 0, and thus the LHS must as well. 



In simulations, statistics, and science, every time we use the average after repeating some process,

or after sampling from a larger population, and we use this average to approximate the true average,
we are implicitly using the LLN.

Harvard Video: youtube.com/watch?vOprNqnHsVIA&listPL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index29

What did we learn?
 Cauchy-Schwarz Inequality, |EXY|  EX 2EY 2 .

 Jensen’s Inequality: convex EgX   gEX ; concave EgX   gEX .

 Bounds on tail probabilities.

 Markov: P|X|  a  E|X |
a .

 Chebyshev: P|X  |  a  2

a2
.

 Cherno: PX  a  EetX

eta
.

 Strong Law of Large #s (SLLN): X n   pointwise, with prob 1.

 Weak Law of Large #s (WLLN): For all   0, P|X n  |    0 as n  .


