
Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture
 Covariance: EXY   EX EY 

 Covariance Properties

 Correlation: CovX,Y

VarX VarY

9 - Conditional Expectation

Why? Allows us to:

 Decompose complicated expectation problems into a number of easier ones.

 Estimate unknowns based on whatever evidence is currently available.

There are two types:
§9.1  Given rv Y and event A, we have: EY |A. (this is just a number)

§9.2  Given rv Y and the result of another rv X, we have: EY |X . (this is a rv!)

§9.1 - Conditional Expectation Given an Event
Discrete: Recall that EY  of discrete Y is a weighted average of the Y values: EY    i1

 y iPY  y i.

Def (Conditional Expectation Given a Discrete Event): After learning that event A occurred, we update the weights.
EY |A   i1

 y iPY  y i |A, where the sum is over the support of Y.

Continuous: Similarly, recall that if Y is cont, then EY  is also a weighted average of Y values: EY   



yfydy.

Def (Conditional Expectation Given a Cont Event): If we learn that A occurred, we again update the weights:
EY   




yfy |Ady.

The conditional PF fy |A can often be obtained as the derivative of the conditional CDF Fy |A  PY  y |A.

The conditional PF can also be computed by a hybrid version of Bayes’ rule: fy |A  PA |Yyfy
PA

.



Law of Total Expectation
Let A1, ,An be a partition of a sample space, with PA i  0 for all i, and let B be an event.

Recall Law of Total Prob: PB   i1
n PB |A iPA i.

Similarly for rv Y, we have:

Thm (Law of Total Expectation): EY    i1
n EY |A iPA i.

§9.2 - Conditional Expectation given a Rv

EY |X  is our best prediction of Y, assuming we get to know X.

Let’s first understand EY |X  x.
Since X  x is an event, EY |X  x is just the conditional expectation of Y given this event (as seen above, this is just a number).

Discrete: If Y is discrete, in our calculation for EY |X  x we use the conditional PY  y |X  x in place of
the unconditional PY  y. So, EY |X  x  yyPY  y |X  x.

Continuous: Analogously, if Y is continuous, for EY |X  x we use the conditional fY |Xy |x in place of
the unconditional fy. So, EY |X  x  




yfY |Xy |xdy.

Notice that because we sum or integrate over y, EY |X  x is a function of x only. We can call this gx : EY |X  x.
If we do, we can then define...

Def (Conditional Expectation given an Rv): Let gx : EY |X  x. Then the conditional expectation of Y given X,
denoted EY |X , is the rv gX .
In other words, after the random process, X crystallizes into x, and EY |X  crystallizes into gx.

Ex (Conditional Expectation): Let cont X and Y have joint PF: fx,y 
7y3 for 0  x  y  1,

0 otherwise.

a. Find EX |Y.

EX |Y  
0

y
xfX |Yx |ydx.

So we must first find the conditional distribution fX |Yx |y.

fX |Yx |y 
fx,y
fYy

.

So we must first find the marginal distribution fYy.



fYy  
0

y
7y3dx  7y3x0

y  7y4.

So, fX |Yx |y 
fx,y
fYx

 7y3

7y4
 1

y  1
y , and

EX |Y  
0

y
xfX |Yx |ydx  1

y 0
y
xdx  1

2y x
20

y  y2

2y  y
2 .

Activity 17

Adam and Eve’s Laws
The next two thms are picked out of §9.3 and 9.5 (even though we’re not covering these sections more fully).
Adam’s law connects conditional to unconditional expectation.

Thm (Adam’s Law): For any X and Y, we have EEY |X   EY.

Proof (discrete case). Let gX  : EY |X . Then:

EgX   xgxPX  x (LOTUS)

 xyyPY  y |X  xPX  x (def of cond expectation)

 xyyPX  xPY  y |X  x

 yyxPY  y |X  xPX  x (swap the order of summation)

 yyPY  y  EY . (LOTP and def of expectation) 

A companion result is Eve’s law, which relates conditional to unconditional variance.

Thm (Eve’s Law): For any X and Y, VarY   EVarY |X   VarEY |X . (notice EVVE)

Proof. Let gX  : EY |X : By Adam’s law, EgX   EY . So,

EVarY |X   EEY 2 |X   gX 2 (expanding variance)

 EY 2  EgX 2, (linearity and Adam’s law)

VarEY |X   EgX 2  EgX 2 (expanding variance)

 EgX 2  EY 2. (Adam’s law)



So, EVarY |X   VarEY |X   EY 2  EgX 2  EgX 2  EY 2

 EY 2  EY 2  VarY . 

Eve’s law Intuition:
To visualize Eve’s law, imagine a population where each person has age X and height Y .

We divide this population ino subpopulations, one for each age X.

Then, there are two things contributing to variation in heights.
Within each age group, people have different heights: within-group variation, EVarY |X .

Within-group variation: 30yr old Heights

Across age groups, the average heights are different: between-group variation, VarEY |X .

Between-group variation: Various Aged Heights

Eve’s law says total variance of Y is the sum of these two sources of variation.

To predict height based on age alone, ideally everyone within an age group would had exactly the same height, while
different age groups had different heights. Then, given someone’s age, we would be able to predict their height perfectly.

No within-group variation

So, the ideal situation for prediction is to have no within-group variation in height,
since the within-group variation cannot be explained by age differences.



Thus, within-group variation is called unexplained variation, and between-group variation is called explained variation.

Eve’s law says that the overall variance of Y is the sum of unexplained and explained variation.

Example Problems
Adam and Eve’s laws allow us to find the mean and variance of complicated rvs, especially in situations that involve multiple
levels of randomness.

Ex (Random Sum): A store receives N customers in a day, where N is a rv w/finite mean and variance.
Let X j be amount spent by the jth customer at the store. Assume that each X j has mean  and variance 2,
and that N and all the X j are indep of one another. Find mean and variance of the random sum X   j1

N X j

(which is the store’s total revenue in a day). Give them in terms of , 2, EN, and VarN.

Solution: Since X is a sum, our first impulse might be to claim "EX  N by linearity".

This is a category error since EX  is a number and N is a rv (RHS and LHS of equation aren’t the same type of things)

The key is that X is not merely a sum, but a random sum; the # of terms we’re adding up is itself random,

whereas linearity applies to sums with a fixed # of terms.

Alternate strategy: we wish to treat N as a constant, so we can use linearity. So let’s condition on N.

By linearity of conditional expectation,

EX |N  E  j1
N X j |N   j1

N EX j |N   j1
N EX j  N.

We used the independence of the X j and N to assert EX j |N  EX j for all j.

Note that the statement "EX |N  N " is not a category error because both sides of the equality are rvs

that are functions of N.

Finally, by Adam’s law, EX  EEX |N  EN  EN.

The average total revenue is the average amount spent per customer, multiplied by the average # of customers.

For VarX, we again condition on N to get VarX |N:

VarX |N  Var  j1
N X j |N   j1

N VarX j |N   j1
N VarX j  N2.

Eve’s law then tells us how to obtain the unconditional variance of X:

VarX  EVarX |N  VarEX |N  EN2  VarN  2EN  2VarN. 

Ex (Adam&Eve Dice): Let Y be the outcome of rolling a fair six-sided die. Define X  Y  Z, where Z |Y  y  Unify,y.
That is, given that the die shows Y  y, then Z is uniformly distr from y to y. Find:EX and VarX.



Solution: I’d like to say: EX  EY  Z , and then use linearity. However, technically the result would be a rv,
not a number since EZ  depends (albeit trivially) on Y.

So, instead we first calculate EX |Y, and then apply Adam’s law: EX  EEX |Y.

Since X  Y  Z, we have: EX |Y  EY  Z |Y

 EY |Y  EZ |Y  Y  0  Y
(because the mean of a symmetric uniform distr over y,y is 0.)

Therefore, by Adams law: EX  EEX |Y  EY.

And, since Y  Unif1,2,3, 4,5, 6, we compute: EY  123456
6  7

2 . So, EX  7
2 .

Regarding Variance, Eve’s Law states: VarX  EVarX |Y   VarEX |Y .

For the first term, we calculate, VarX |Y   VarY  Z |Y 

 VarY |Y   VarZ |Y 
(Y is a constant in this context, since we are conditioning on Y, so Z and Y are indep)

 0  VarZ |Y   VarZ |Y .

Recall the variance of Unifa,b is: ba2

12 .

So, since Z |Y  y  Unify,y, we have VarZ |Y  y  2y2

12  4y2

12  y2

3 .

Thus: EVarX |Y  E Y 2

3  1
3 EY 2.

We compute: EY2  122232425262

6  91
6 , (LOTUS)

Thus, EVarX |Y  1
3

91
6  91

18 .

For the second Eve term, VarEX |Y , note we’ve already found: EX |Y  Y,
therefore VarEX |Y   VarY .

And VarY   EY 2  EY 2  91
6   7

2 
2  35

12 . (we computed these earlier)

Now we compute Eve’s total variance: VarX   EVarX |Y   VarEX |Y   91
18 

35
12  287

36 .



Activity 18

What did we learn?
 Conditional Expectation Given an Event: scalar EY |A

 Conditional Expectation Given a rv: rv EY |X 

 Adam’s Law

 Eve’s Law


