
Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture
 Covariance: EXY   EX EY 

 Covariance Properties

 Correlation: CovX,Y

VarX VarY

9 - Conditional Expectation

Why? Allows us to:

 Decompose complicated expectation problems into a number of easier ones.

 Estimate unknowns based on whatever evidence is currently available.

There are two types:
§9.1  Given rv Y and event A, we have: EY |A. (this is just a number)

§9.2  Given rv Y and the result of another rv X, we have: EY |X . (this is a rv!)

§9.1 - Conditional Expectation Given an Event
Discrete: Recall that EY  of discrete Y is a weighted average of the Y values: EY    i1

 y iPY  y i.

Def (Conditional Expectation Given a Discrete Event): After learning that event A occurred, we update the weights.
EY |A   i1

 y iPY  y i |A, where the sum is over the support of Y.

Continuous: Similarly, recall that if Y is cont, then EY  is also a weighted average of Y values: EY   



yfydy.

Def (Conditional Expectation Given a Cont Event): If we learn that A occurred, we again update the weights:
EY   




yfy |Ady.

The conditional PF fy |A can often be obtained as the derivative of the conditional CDF Fy |A  PY  y |A.

The conditional PF can also be computed by a hybrid version of Bayes’ rule: fy |A  PA |Yyfy
PA

.



Law of Total Expectation
Let A1, ,An be a partition of a sample space, with PA i  0 for all i, and let B be an event.

Recall Law of Total Prob: PB   i1
n PB |A iPA i.

Similarly for rv Y, we have:

Thm (Law of Total Expectation): EY    i1
n EY |A iPA i.

§9.2 - Conditional Expectation given a Rv

EY |X  is our best prediction of Y, assuming we get to know X.

Let’s first understand EY |X  x.
Since X  x is an event, EY |X  x is just the conditional expectation of Y given this event (as seen above, this is just a number).

Discrete: If Y is discrete, in our calculation for EY |X  x we use the conditional PY  y |X  x in place of
the unconditional PY  y. So, EY |X  x  yyPY  y |X  x.

Continuous: Analogously, if Y is continuous, for EY |X  x we use the conditional fY |Xy |x in place of
the unconditional fy. So, EY |X  x  




yfY |Xy |xdy.

Notice that because we sum or integrate over y, EY |X  x is a function of x only. We can call this gx : EY |X  x.
If we do, we can then define...

Def (Conditional Expectation given an Rv): Let gx : EY |X  x. Then the conditional expectation of Y given X,
denoted EY |X , is the rv gX .
In other words, after the random process, X crystallizes into x, and EY |X  crystallizes into gx.

Ex (Conditional Expectation): Let cont X and Y have joint PF: fx,y 
7y3 for 0  x  y  1,

0 otherwise.

a. Find EX |Y.

EX |Y  
0

y
xfX |Yx |ydx.

So we must first find the conditional distribution fX |Yx |y.

fX |Yx |y 
fx,y
fYy

.

So we must first find the marginal distribution fYy.



fYy  
0

y
7y3dx  7y3x0

y  7y4.

So, fX |Yx |y 
fx,y
fYx

 7y3

7y4
 1

y  1
y , and

EX |Y  
0

y
xfX |Yx |ydx  1

y 0
y
xdx  1

2y x
20

y  y2

2y  y
2 .

Activity 17

Adam and Eve’s Laws
The next two thms are picked out of §9.3 and 9.5 (even though we’re not covering these sections more fully).
Adam’s law connects conditional to unconditional expectation.

Thm (Adam’s Law): For any X and Y, we have EEY |X   EY.

Proof (discrete case). Let gX  : EY |X . Then:

EgX   xgxPX  x (LOTUS)

 xyyPY  y |X  xPX  x (def of cond expectation)

 xyyPX  xPY  y |X  x

 yyxPY  y |X  xPX  x (swap the order of summation)

 yyPY  y  EY . (LOTP and def of expectation) 

A companion result is Eve’s law, which relates conditional to unconditional variance.

Thm (Eve’s Law): For any X and Y, VarY   EVarY |X   VarEY |X . (notice EVVE)

Proof. Let gX  : EY |X : By Adam’s law, EgX   EY . So,

EVarY |X   EEY 2 |X   gX 2 (expanding variance)

 EY 2  EgX 2, (linearity and Adam’s law)

VarEY |X   EgX 2  EgX 2 (expanding variance)

 EgX 2  EY 2. (Adam’s law)



So, EVarY |X   VarEY |X   EY 2  EgX 2  EgX 2  EY 2

 EY 2  EY 2  VarY . 

Eve’s law Intuition:
To visualize Eve’s law, imagine a population where each person has age X and height Y .

We divide this population ino subpopulations, one for each age X.

Then, there are two things contributing to variation in heights.
Within each age group, people have different heights: within-group variation, EVarY |X .

Within-group variation: 30yr old Heights

Across age groups, the average heights are different: between-group variation, VarEY |X .

Between-group variation: Various Aged Heights

Eve’s law says total variance of Y is the sum of these two sources of variation.

To predict height based on age alone, ideally everyone within an age group would had exactly the same height, while
different age groups had different heights. Then, given someone’s age, we would be able to predict their height perfectly.

No within-group variation

So, the ideal situation for prediction is to have no within-group variation in height,
since the within-group variation cannot be explained by age differences.



Thus, within-group variation is called unexplained variation, and between-group variation is called explained variation.

Eve’s law says that the overall variance of Y is the sum of unexplained and explained variation.

Example Problems
Adam and Eve’s laws allow us to find the mean and variance of complicated rvs, especially in situations that involve multiple
levels of randomness.

Ex (Random Sum): A store receives N customers in a day, where N is a rv w/finite mean and variance.
Let X j be amount spent by the jth customer at the store. Assume that each X j has mean  and variance 2,
and that N and all the X j are indep of one another. Find mean and variance of the random sum X   j1

N X j

(which is the store’s total revenue in a day). Give them in terms of , 2, EN, and VarN.

Solution: Since X is a sum, our first impulse might be to claim "EX  N by linearity".

This is a category error since EX  is a number and N is a rv (RHS and LHS of equation aren’t the same type of things)

The key is that X is not merely a sum, but a random sum; the # of terms we’re adding up is itself random,

whereas linearity applies to sums with a fixed # of terms.

Alternate strategy: we wish to treat N as a constant, so we can use linearity. So let’s condition on N.

By linearity of conditional expectation,

EX |N  E  j1
N X j |N   j1

N EX j |N   j1
N EX j  N.

We used the independence of the X j and N to assert EX j |N  EX j for all j.

Note that the statement "EX |N  N " is not a category error because both sides of the equality are rvs

that are functions of N.

Finally, by Adam’s law, EX  EEX |N  EN  EN.

The average total revenue is the average amount spent per customer, multiplied by the average # of customers.

For VarX, we again condition on N to get VarX |N:

VarX |N  Var  j1
N X j |N   j1

N VarX j |N   j1
N VarX j  N2.

Eve’s law then tells us how to obtain the unconditional variance of X:

VarX  EVarX |N  VarEX |N  EN2  VarN  2EN  2VarN. 

Ex (Adam&Eve Dice): Let Y be the outcome of rolling a fair six-sided die. Define X  Y  Z, where Z |Y  y  Unify,y.
That is, given that the die shows Y  y, then Z is uniformly distr from y to y. Find:EX and VarX.



Solution: I’d like to say: EX  EY  Z , and then use linearity. However, technically the result would be a rv,
not a number since EZ  depends (albeit trivially) on Y.

So, instead we first calculate EX |Y, and then apply Adam’s law: EX  EEX |Y.

Since X  Y  Z, we have: EX |Y  EY  Z |Y

 EY |Y  EZ |Y  Y  0  Y
(because the mean of a symmetric uniform distr over y,y is 0.)

Therefore, by Adams law: EX  EEX |Y  EY.

And, since Y  Unif1,2,3, 4,5, 6, we compute: EY  123456
6  7

2 . So, EX  7
2 .

Regarding Variance, Eve’s Law states: VarX  EVarX |Y   VarEX |Y .

For the first term, we calculate, VarX |Y   VarY  Z |Y 

 VarY |Y   VarZ |Y 
(Y is a constant in this context, since we are conditioning on Y, so Z and Y are indep)

 0  VarZ |Y   VarZ |Y .

Recall the variance of Unifa,b is: ba2

12 .

So, since Z |Y  y  Unify,y, we have VarZ |Y  y  2y2

12  4y2

12  y2

3 .

Thus: EVarX |Y  E Y 2

3  1
3 EY 2.

We compute: EY2  122232425262

6  91
6 , (LOTUS)

Thus, EVarX |Y  1
3

91
6  91

18 .

For the second Eve term, VarEX |Y , note we’ve already found: EX |Y  Y,
therefore VarEX |Y   VarY .

And VarY   EY 2  EY 2  91
6   7

2 
2  35

12 . (we computed these earlier)

Now we compute Eve’s total variance: VarX   EVarX |Y   VarEX |Y   91
18 

35
12  287

36 .



Activity 18

What did we learn?
 Conditional Expectation Given an Event: scalar EY |A

 Conditional Expectation Given a rv: rv EY |X 

 Adam’s Law

 Eve’s Law


