Probability Theory

Instructor: Jodin Morey

Previous Lecture

- Conditional Expectation Given an Event: scalar E(Y|A)
- Conditional Expectation Given a rv: rv E(Y|X)
- ♦ Adam's Law
- ♦ Eve's Law

8 - Transformations

§8.1 - Change of Variables

"Change of Variables" is the analog of *u*-sub in Calc I:

Recall: $\int_{1}^{3} e^{2x} dx = ??$

$$= \int_{2}^{6} e^{y} \frac{1}{2} dy$$
, where $y = 2x$, $dy = 2dx$, $dx = \frac{1}{2} dy$, $1 \mapsto 2$, and $3 \mapsto 6$.

 $\frac{1}{2}$ is a "scaling factor" from the derivative, or a "fudge factor."

Although we don't emphasize it in Calc I, there is a mapping of intervals here.

Thm (Change of Vars in 1D). Let X be cont w/PF f_X , and let Y := g(X), where g is differentiable and strictly increasing (or strictly decreasing). Then the PF of Y is $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$. The support of Y is all g(x) with x in the support of X.

From our calculus example, we could call *X* a rv with "PF" $f_X(x) = e^{2x}$,

We let y := g(x) = 2x. So $x = g^{-1}(y) = \frac{1}{2}y$, and $\frac{dx}{dy} = \frac{1}{2}$.

Notice that after the transformation we have: $f_Y(y) = e^y \frac{1}{2} = e^{2x} \frac{dx}{dy} = f_X(x) \left| \frac{dx}{dy} \right|$.

Proof. Let X be cont w/PF f_X , and let Y := g(X) be strictly increasing. The CDF of Y is:

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$

 $= P(X \le g^{-1}(y))$ (the requirement of strictly increasing allow us to take an inverse)

$$= F_X(x);$$

so by the chain rule, the PF of Y is $f_Y(y) = \frac{d}{dy}F_Y(y) = \frac{d}{dy}F_X(x) = f_X(x)\frac{dx}{dy}$.

The proof for *g* strictly decreasing is analogous. In that case the PF ends up as $-f_X(x)\frac{dx}{dy}$, which is nonnegative since $\frac{dx}{dy} < 0$ if *g* is strictly decreasing. Using $\left|\frac{dx}{dy}\right|$, as in the statement of the thm, covers both cases.

Easy to remember form (for strictly increasing): $f_Y(y)dy = f_X(x)dx$

Ex (Log-Normal PF): Let $X \sim \mathcal{M}(0, 1)$ and $Y := e^X$. Use change of variables to find the PF of Y.

Note $g(x) = e^x$ is strictly increasing. Let $y = e^x$.

So, $x = \ln y = g^{-1}(y)$ and $\frac{dx}{dy} = \frac{1}{y}$.

Recall $f_X(x) = \varphi(x)$ for $\mathcal{N}(0, 1)$. We want $f_Y(y)$.

Thus, $f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right| = \varphi(\ln y) \frac{1}{y}$

Note we specify the support of the distr.

(since x ranges from $-\infty$ to ∞ , e^x ranges from 0 to ∞ .)

$$f_{Y}(y) = \varphi(\ln y) \frac{1}{y}$$
, for $y > 0$.

Alternatively, $F_Y(y) = P(Y \le y)$

$$= P(e^X \le y) = P(X \le \ln y) = \Phi(\ln y).$$

So, the PF is again
$$f_Y(y) = \frac{d}{dy} \Phi(\ln y) = \varphi(\ln y) \frac{1}{y}$$
, for $y > 0$.

Harvard Video (ignore convolutions): youtube.com/watch?v=yXwPUAIvFyg&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=23

What did we learn?

• Change of Vars in 1D

