
Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture
 Median/Mode

 Moments: Central/Standardized

 Skewness/Kurtosis

 Sample Moments/Law of Large Numbers

§6.4 -Moment Generating Functions (MGFs)

Generating functions are a bridge between sequences of numbers and the world of

calculus. Start with a sequence of numbers, then create a continuous function –

the generating function – that encodes the sequence. We then have all the tools

of calculus at our disposal for manipulating the generating function.

A moment generating function encodes the moments of a distr.

Def (Moment Generating Function): If it exists, the MGF of X is Mt  Ee tX as a function of t.

The MGF exists if Mt is finite on some open interval a,a containing 0. Otherwise the MGF of X doesn’t exist.

The inclusion of t let’s us use calculus!

M0  1 for any valid MGFM. So, whenever you compute an MGF, plug in 0 and see if you get 1, as a quick check!

Ex (Bernoulli MGF): For X ~ Bernp, e tX takes on the value e t with prob p and the value 1 with prob q,
soMt  Ee tX  pe t  q.

Since this is finite for all values of t, the MGF is defined on .

Ex (Geometric MGF): For X ~ Geomp, the MFG isMt  Ee tX  k0
 e tkqkp  pk0
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for qe t  1, i.e., for t in 1, log 1
q , which is an open interval containing 0.

Ex (UniformMGF): For U ~ Unifa,b, the MGF is Mt  Ee tU  1
ba a

b
e tudu  etbeta

tba for t  0, and M0  1.



MGFs:
 Encode a rv’s moments.

 Determine a rv’s distr, (like CDF and PF).

 Make it easy to find the distr of a sum of indep rvs.

Thm (Moments via Derivatives of the MGF): Given the MGF of X, we can get the nth moment of X
by evaluating the nth derivative of the MGF at 0. So EXn  Mn0.

Proof: Note that the Taylor expansion of Mt about 0 is Mt  n0
 Mn0 tn

n! .

On the other hand, we also have Mt  Ee tX  E n0
 Xn tn

n! . (using taylor exp of e tX)

Next, we’re allowed to interchange the position of the expectation and the infinite sum above
because certain technical conditions are satisfied (this is where we invoke the condition that Ee tX is
finite in an interval around 0). So Mt  n0

 EXn tn

n! .

Matching the cofficients of the two expansions, we get EXn  Mn0. 

So, w/the MGF, it is possible to find moments by taking derivatives rather than doing integrals!

Thm (MGF Determines the Distr). The MGF of a rv determines its distr. if two rvs have the same MGF,
they have the same distr.

If there’s even a tiny interval a,a containing 0 on which the MGFs are equal, the rvs must have the same distr.

[Proof Requires Analysis]

Thm (MGF of a Sum of Indep Rvs): If X and Y are indep, then the MGF of X  Y is the product of the individual MGFs:

MXYt  MXtMYt.

This is true because if X and Y are indep, then Ee tXY  Ee tXEe tY (this follows from results in Chapter 7).

Using this fact, we can get the MGFs of the Binomial and Negative Binomial, which are sums of
indep Bernoullis and Geometrics, respectively.

Proposition (MGF of Location-Scale Transformation): If X has MGFMXt, then the MGF of bX  a
is Ee tbXa  eatEebtX  eatMXbt.



Ex (Moments via Derivatives of MGF): Let X have the PF: fx :

2
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3
11 if X  0,
4
11 if X  1,
2
11 if X  2,

0 otherwise.

a. FindMXt.
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b. UsingMXt, find EX.
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c. Let Y  7X  5. Use MXt to find MYt.
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Ex (UniformMGF):

a. Find the MGF (MUt) of U ~ Unif0,1.

MUt  Ee tU
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t for t  0.

b. UsingMX from the previous example, and assuming U and X are indep find MUXt.
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c. Use MUt to find the mean and variance of U.
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Harvard Videos:
youtube.com/watch?vN8O6zd6vTZ8&listPL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index18

youtube.com/watch?vtVDdx6xUOcs&listPL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index19

youtube.com/watch?vxiVWNkQUqKk&listPL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index20

What did we learn?
 Moment Generating Functions (MGFs)

 Moments via Derivatives of MGFs


