
Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture
 Uniform Distr

 Location-Scale Transformation

 Universality of the Uniform: Percentiles

§5.4 - Normal Distr

A normal distr is a cont distr with a bell-shaped PF.

Carl Gauss
Ceres

The Normal Distr was discovered in 1809; in an attempt to locate the dwarf planet Ceres.

Gauss noticed that errors in measuring Ceres’ location were mound-shaped.

Normal distrs subsequently became important in the Central Limit Theorem (CLT, §10.3), which says:
the sum of a large number of iid rvs (discrete or cont) is approximately normally distr, regardless of the distr of the rvs!

Left: PF of iid X i. Right: PF of  iX i.

For now, we’ll look at PF/CDF for "standard Normal" (mean   0, Std dev   1), then look at Normal distr’s more generally.



Def (Standard Normal Distr): A cont Z has standard Normal distr if its

PF  is given by: z  1

2
e

z2

2 ,    z  .

We write Z ~ N0,1 since, Z has mean 0 and variance 1. ...

PF of Z
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Thus, EZ  
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[Proof (that   1) is in the book]

The standard Normal CDF  is: z  

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PF and CDF of Z

Symmetry Properties
1. Symmetry of PF:  satisfies z  z, i.e.,  is even. (proof is self evident since z appears as z2)

2. Symmetry of tail areas: We have: z  1  z for all z.

Proof: z  


z
tdt
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 1  
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z
udu  1  z. (PFs integrate to 1)

3. Symmetry of Z and Z: If Z ~N0,1, then Z ~N0,1 as well.

Proof: Must show that Z has CDF .



Note that the CDF of Z is PZ  z  PZ  z  1  z.

But this is z according to what we just argued. So Z has CDF . 

Generalizing: Starting w/a standard Normal Z ~N0,1, we can obtain a Normal rv w/any mean
and variance by a location-scale transformation (shifting and scaling).

Def (Normal Distr): Let Z ~ N0,1, and  and 2 be real with   0. Then X    Z has a Normal distr
with mean  and variance 2. We denote this: X ~ N,2.

Verifying mean/var: ...

E  Z  E  EZ      0   and

Var  Z  2VarZ  2  1  2.

How do we go from Normal X ~ N,2 back to std Normal Z? It’s called standardization:

X
 ~ N0,1. (going to be very useful for calculating probs!!)

Thm (Normal CDF & PF): Let X ~ N,2. Then the CDF of X is
Fx   x

 , (accomplished thru standardization)

and the PF of X is fx   x
  1

 . (differentiate/chain rule)

Proof: For the CDF, we start from the definition Fx  PX  x, standardize,
and use CDF of the standard Normal:

Fx  PX  x  P X
  x

   x
 .

Then we differentiate to get the PF: fx  d
dx
 x

   1
 

x
 .

We can also write out the PF as: fx  1

 2
exp  x2

22 . 

Ex: Let X be the amount of snow which falls on Syracuse. We assume it follows a Normal distr, w/an
average of 120" and a variance of 625" . What is the probability of observing X less than 80"?

PX  80  P X120
625

 80120
625

(standardization)

 PZ  1.6  1.6 (standard CDF)

 0.0548. Or 5.5%. (using z-score calculator on calculator.net) 



Empirical Rule

Harvard Video: youtube.com/watch?v72QjzHnYvL0&listPL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index14

§5.5 - Exponential Distr

The Exponential distr is a cont counterpart to the Geometric distr.

Recall - Geometric Rv: counts # of failures before first success in a sequence of Bernoullis: PX  k  qkp.

Exponential Rv: Now we’re waiting for success in cont time, where they arrive at a rate of  successes per unit time.
Exponential X represents waiting time until the first success.

Def (Exponential Distr): Cont X has Exponential distr w/parameter  (where   0) if its PF is:
ft  et, t  0. We denote this: X ~ Expo.

The corresponding CDF is Ft  1  et, t  0.

Geom 1
2


Expo1 PDF and CDF. (similar to Geometric PMF and CDF)

Generalize: Location-scale transformation? Can’t translate since Exponential rvs have support on 0,.

However, we can scale. For , if X ~ Expo1, then Y : X
 ~ Expo. ...

Proof: Must show that Y has CDF of Expo.



PY  y  P X
  y

 PX  y  1  e1y, for y  0. 

Conversely: If Y ~ Expo, then Y ~ Expo1. (similar proof)

Mean/Var of X ~ Expo1 and Y ~ Expo

The mean and variance of Expo1 are 1.

Proof: EX  
0


tetdt

 t  et|0  
0


etdt (integration by parts)

L H
 0  

0


etdt  et|0  1.

EX 2  
0


t2etdt  2, (integration by parts)

So, VarX   EX 2  EX2  1. 

The mean and variance of Y ~ Expo are 1
 and 1

2
, resp. ...

Proof: EY  E X
  

1
 EX 

1
 , and VarY  Var X

  
1
2
VarX  1

2
. 

Memoryless: Even if you’ve waited for hrs or days without success, success isn’t anymore

likely to arrive soon. (recall in discrete flipping of coin, waiting for heads)

Def (Discrete Memoryless Property): A discrete distr of X is memoryless if:

PX  j  k |X  j  PX  k for all nonnegative integers j,k.

So the prob of it taking more than 5  3  2 flips to get a heads if you’ve already flipped 3 times is
the same as the prob of it taking more than 2 flips to get a heads. The three earlier failed flips don’t
help your probability.



Def (Cont Memoryless Property): A cont distr of X is memoryless if:

PX  s  t |X  s  PX  t for all s, t  0.

In particular, the Exponential distr has the memoryless property.

Proof: Let X ~ Expo. Then: PX  s  t |X  s  ?


P X st, X s

PX s

 PX st
PX s  11est

11es
 est

es
 etes

es
 et  1  1  et  PX  t. 

Thm: If cont X is positive w/memoryless property, then X has an Exponential distr.

[Proof in Book] ( but positive discrete Geometric rv ALSO has it)

Ex (hiccups, cont): Suppose you have a hiccup every 30 secs on average.

a. Assuming you just hiccuped, what’s the prob your next hiccup is less than 40 secs away?

Rate: how many hiccups per second?

  1
30

hiccup
sec . So, PX  40  1  e

1
30
40  0.7364.

b. If it’s been 40 seconds since your last hiccup, what’s the prob of waiting at least another 20 seconds?

Using the memoryless property, PX  60 |X  40  PX  20  e
1
30
20  0.5134.

c. What’s prob of hiccuping 4 times over the next minute?

This is a Poisson distr with two hiccups per minute on average. So   2.

Thus, PY  4  e224

4!  0.09. 

Harvard Video: youtube.com/watch?vbM6nFDjvEns&listPL2SOaU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index17



What did we learn?
 Normal DistrN,2: PF/CDF/Mean/Var

 Normal symmetry properties, standardization, empirical rule

 Exponential Distr: PF/CDF/Mean/Var

 Memoryless Property


