Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture

- ♦ Uniform Distr
- Location-Scale Transformation
- Universality of the Uniform: Percentiles

§5.4 - Normal Distr

A normal distr is a cont distr with a bell-shaped PF.

The Normal Distr was discovered in 1809; in an attempt to locate the dwarf planet Ceres.

Gauss noticed that errors in measuring Ceres' location were mound-shaped.

Normal distrs subsequently became important in the Central Limit Theorem (CLT, §10.3), which says: the sum of a large number of iid rvs (discrete or cont) is approximately normally distr, **regardless of the distr of the rvs**!

Carl Gauss

For now, we'll look at PF/CDF for "standard Normal" (mean $\mu = 0$, Std dev $\sigma = 1$), then look at Normal distr's more generally.

Def (Standard Normal Distr): A cont *Z* has standard Normal distr if its PF φ is given by: $\varphi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}, \qquad -\infty < z < \infty.$

We write $Z \sim \mathcal{N}(0, 1)$ since, Z has mean 0 and variance 1.

Proof (that
$$\mu = 0$$
): $E(Z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} z e^{-\frac{z^2}{2}} dz$

Notice that
$$\frac{1}{\sqrt{2\pi}} z e^{-\frac{z^2}{2}}$$
 is an odd function. So, $\int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} z e^{-\frac{z^2}{2}} dz = -\int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} z e^{-\frac{z^2}{2}} dz$.

Thus,
$$E(Z) = \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi}} z e^{-\frac{z^2}{2}} dz + \int_{0}^{\infty} \frac{1}{\sqrt{2\pi}} z e^{-\frac{z^2}{2}} dz = 0.$$

[Proof (that $\sigma = 1$) is in the book]

PF and CDF of Z

Symmetry Properties

Proo

1. Symmetry of PF: φ satisfies $\varphi(z) = \varphi(-z)$, i.e., φ is even. (proof is self evident since z appears as z^2)

2. Symmetry of tail areas: We have: $\Phi(z) = 1 - \Phi(-z)$ for all z.

f:
$$\Phi(-z) = \int_{-\infty}^{-z} \varphi(t) dt$$

= $-\int_{-\infty}^{z} \varphi(-u) du = \int_{z}^{\infty} \varphi(u) du$ (c.o.v: $t \to -u$, and φ is even)

 $= 1 - \int_{-\infty}^{z} \varphi(u) du = 1 - \Phi(z).$ (PFs integrate to 1)

3. Symmetry of Z and -Z: If $Z \sim \mathcal{N}(0, 1)$, then $-Z \sim \mathcal{N}(0, 1)$ as well.

Proof: Must show that -Z has CDF Φ .

...

Note that the CDF of -Z is $P(-Z \le z) = P(Z \ge -z) = 1 - \Phi(-z)$.

But this is $\Phi(z)$ according to what we just argued. So -Z has CDF Φ .

Generalizing: Starting w/a standard Normal $Z \sim \mathcal{N}(0, 1)$, we can obtain a Normal rv w/*any* mean and variance by a location-scale transformation (shifting and scaling).

Def (Normal Distr): Let $Z \sim \mathcal{N}(0, 1)$, and μ and σ^2 be real with $\sigma > 0$. Then $X = \mu + \sigma Z$ has a Normal distr with mean μ and variance σ^2 . We denote this: $X \sim \mathcal{N}(\mu, \sigma^2)$.

Verifying mean/var:

•

 $E(\mu + \sigma Z) = E(\mu) + \sigma E(Z) = \mu + \sigma \cdot 0 = \mu$ and

 $Var(\mu + \sigma Z) = \sigma^2 Var(Z) = \sigma^2 \cdot 1 = \sigma^2.$

How do we go from Normal $X \sim \mathcal{N}(\mu, \sigma^2)$ back to std Normal Z? It's called *standardization*:

 $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1).$ (going to be very useful for calculating probs!!)

Thm (Normal CDF & PF): Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then the CDF of X is $F(x) = \Phi(\frac{x-\mu}{\sigma}),$ (accomplished thru standardization) and the PF of X is $f(x) = \varphi(\frac{x-\mu}{\sigma})\frac{1}{\sigma}$. (differentiate/chain rule)

Proof: For the CDF, we start from the definition $F(x) = P(X \le x)$, standardize, and use CDF of the standard Normal:

$$F(x) = P(X \le x) = P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = \Phi(\frac{x-\mu}{\sigma}).$$

Then we differentiate to get the PF: $f(x) = \frac{d}{dx}\Phi(\frac{x-\mu}{\sigma}) = \frac{1}{\sigma}\varphi(\frac{x-\mu}{\sigma})$.

We can also write out the PF as:
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
.

- **Ex**: Let *X* be the amount of snow which falls on Syracuse. We assume it follows a Normal distr, w/an average of 120" and a variance of 625". What is the probability of observing *X* less than 80"?
 - $P(X < 80) = P\left(\frac{X-120}{\sqrt{625}} < \frac{80-120}{\sqrt{625}}\right)$ (standardization)

 $= P(Z < -1.6) = \Phi(-1.6)$ (standard CDF)

= 0.0548. Or 5.5%. (using z-score calculator on calculator.net)

Harvard Video: youtube.com/watch?v=72QjzHnYvL0&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=14

§5.5 - Exponential Distr

The Exponential distr is a cont counterpart to the Geometric distr.

Recall - Geometric Rv: counts # of failures before first success in a sequence of Bernoullis: $P(X = k) = q^k p$.

- **Exponential Rv**: Now we're waiting for success in cont time, where they arrive at a rate of λ successes **per unit time**. Exponential *X* represents **waiting time until the first success**.
- **Def** (Exponential Distr): Cont X has Exponential distr w/parameter λ (where $\lambda > 0$) if its PF is: $f(t) = \lambda e^{-\lambda t}$, t > 0. We denote this: $X \sim Expo(\lambda)$.

The corresponding CDF is $F(t) = 1 - e^{-\lambda t}$, t > 0.

Expo(1) PDF and CDF. (similar to Geometric PMF and CDF)

...

However, we can scale. For λ , if $X \sim Expo(1)$, then $Y := \frac{X}{\lambda} \sim Expo(\lambda)$.

Proof: Must show that *Y* has CDF of $Expo(\lambda)$.

$$P(Y \le y) = P(\frac{X}{\lambda} \le y)$$

$$= P(X \le \lambda y) = 1 - e^{-1(\lambda y)}, \text{ for } y > 0.$$

Conversely: If $Y \sim Expo(\lambda)$, then $\lambda Y \sim Expo(1)$. (similar proof)

Mean/Var of $X \sim Expo(1)$ and $Y \sim Expo(\lambda)$

The mean and variance of Expo(1) are 1.

Proof: $E(X) = \int_0^\infty te^{-t} dt$ $= -t \cdot e^{-t} |_0^\infty - \int_0^\infty (-e^{-t}) dt \qquad \text{(integration by parts)}$ $\stackrel{L'H}{=} 0 + \int_0^\infty e^{-t} dt = -e^{-t} |_0^\infty = 1.$ $E(X^2) = \int_0^\infty t^2 e^{-t} dt = 2, \qquad \text{(integration by parts)}$

So,
$$Var(X) = E(X^2) - (EX)^2 = 1.$$

The mean and variance of $Y \sim Expo(\lambda)$ are $\frac{1}{\lambda}$ and $\frac{1}{\lambda^2}$, resp.

Proof:
$$E(Y) = E(\frac{X}{\lambda}) = \frac{1}{\lambda}E(X) = \frac{1}{\lambda}$$
, and $Var(Y) = Var(\frac{X}{\lambda}) = \frac{1}{\lambda^2}Var(X) = \frac{1}{\lambda^2}$.

Memoryless: Even if you've waited for hrs or days without success, success isn't anymore likely to arrive soon. (recall in discrete flipping of coin, waiting for heads)

Def (Discrete Memoryless Property): A discrete distr of X is memoryless if: $P(X \ge j + k | X \ge j) = P(X \ge k)$ for all nonnegative *integers* j, k.

So the prob of it taking more than 5 = 3 + 2 flips to get a heads if you've already flipped 3 times is the same as the prob of it taking more than 2 flips to get a heads. The three earlier failed flips don't help your probability.

Def (**Cont Memoryless Property**): A cont distr of *X* is memoryless if:

 $P(X \ge s + t | X \ge s) = P(X \ge t)$ for all $s, t \ge 0$.

In particular, the Exponential distr has the memoryless property.

Proof: Let $X \sim Expo(\lambda)$. Then: $P(X \ge s + t | X \ge s) = ?$

$$= \frac{P(X \ge s+t, X \ge s)}{P(X \ge s)}$$

 $= \frac{P(X \ge s+t)}{P(X \ge s)} = \frac{1 - (1 - e^{-\lambda(s+t)})}{1 - (1 - e^{-\lambda s})} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = \frac{e^{-\lambda t}e^{-\lambda s}}{e^{-\lambda s}} = e^{-\lambda t} = 1 - (1 - e^{-\lambda t}) = P(X \ge t).$

Thm: If cont X is positive w/memoryless property, then X has an Exponential distr.

[Proof in Book] (0 but positive discrete Geometric rv ALSO has it)

Ex (hiccups, cont): Suppose you have a hiccup every 30 secs on average.

a. Assuming you just hiccuped, what's the prob your next hiccup is less than 40 secs away?

Rate: how many hiccups per second?

$$\lambda = \frac{1}{30} \frac{hiccup}{sec}$$
. So, $P(X < 40) = 1 - e^{-\frac{1}{30}(40)} \approx 0.7364$.

b. If it's been 40 seconds since your last hiccup, what's the prob of waiting at least another 20 seconds?

Using the memoryless property, $P(X > 60 | X > 40) = P(X > 20) = e^{-\frac{1}{30}(20)} \approx 0.5134$.

c. What's prob of hiccuping 4 times over the next minute?

This is a Poisson distr with two hiccups per minute on average. So $\lambda = 2$.

Thus,
$$P(Y = 4) = \frac{e^{-2}2^4}{4!} \approx 0.09.$$

Harvard Video: youtube.com/watch?v=bM6nFDjvEns&list=PL2SOaU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=17

What did we learn?

- Normal Distr $\mathcal{M}(\mu, \sigma^2)$: PF/CDF/Mean/Var
- Normal symmetry properties, standardization, empirical rule
- Exponential Distr: PF/CDF/Mean/Var
- Memoryless Property

