Probability Theory

Instructor: Jodin Morey = moreyj@lemoyne.edu

Previous Lecture
¢ Uniform Distr

¢ Location-Scale Transformation

¢ Universality of the Uniform: Percentiles

§5.4 - Normal Distr
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A normal distr is a cont distr with a bell-shaped PF.

The Normal Distr was discovered in 1809; in an attempt to locate the dwarf planet Ceres.

Gauss noticed that errors in measuring Ceres’ location were mound-shaped.

Normal distrs subsequently became important in the Central Limit Theorem (CLT, §10.3), which says:
the sum of a large number of iid rvs (discrete or cont) is approximately normally distr, regardless of the distr of the rvs!
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Left: PF of iid X;. Right: PF of X, X;.

For now, we’ll look at PF/CDF for "standard Normal" (mean u = 0, Std dev o = 1), then look at Normal distr’s more generally.
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Def (Standard Normal Distr): A cont Z has standard Normal distr if its
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PF ¢ is given by: ¢(z) = #e‘T, —0 <z < oo,
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We write Z ~ IN(0, 1) since, Z has mean 0 and variance 1.
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Proof (that u = 0): E(Z) = I —ze £ 7 dz.

Thus, £(Z) = [ =ze Tdr+ [ =ze Tdz = 0. |
[Proof (that o = 1) is in the book]

The standard Normal CDF @ is: ®(z) = I:O p(t)dt = j.:O ?e*%dt. (can you integrate this?)
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PF and CDF of Z
Symmetry Properties

1. Symmetry of PF: ¢ satisfies ¢(z) = ¢(—=2), i.e., ¢ is even. (proof is self evident since z appears as z*)

2. Symmetry of tail areas: We have: ®(z) = 1 — ®(—z) for all z.
Proof: ®(-—z) = f:; o(t)dt

= —I; o(—u)du = jj o(u)du (c.0.v: t > —u, and g is even)
=1- J-:)O o(w)du = 1 - 0(z2). (PFs integrate to 1)

3. Symmetry of Z and —Z: If Z ~ N(0, 1), then —Z ~ IN(0, 1) as well.

Proof: Must show that —Z has CDF ®.



Note that the CDF of -Zis P(-Z <z) = P(Z > —z) = 1 — ®(—2).

But this is @(z) according to what we just argued. So —Z has CDF ®. |

Generalizing: Starting w/a standard Normal Z ~ 2N(0, 1), we can obtain a Normal rv w/any mean
and variance by a location-scale transformation (shifting and scaling).

Def (Normal Distr): Let Z ~ 2N(0, 1), and p and 62 be real with ¢ > 0. Then X = p + 6Z has a Normal distr
with mean p and variance 6. We denote this: X ~ N(u,c?).

Verifying mean/var:
E(u+oZ) =E(uw)+0E(Z) =u+0+0=pu and
Var(u+cZ) = 6*Var(Z) = 6? -1 = o2,

How do we go from Normal X ~ N{(u,?) back to std Normal Z? 1t’s called standardization:
% ~ IN(O, 1). (going to be very useful for calculating probs!!)

Thm (Normal CDF & PF): Let X ~ N{u,0?). Then the CDF of X is
F(x) = ®(=H), (accomplished thru standardization)

(o2

and the PF of X is f{x) = o(—-) L. (differentiate/chain rule)

o

Proof: For the CDF, we start from the definition F(x) = P(X < x), standardize,
and use CDF of the standard Normal:

F(x):P(XSX)=P<%§%>:q)(x;#).

Then we differentiate to get the PF: f{x) = d%(D( ) = Lo(=h).

We can also write out the PF as: f{x) = Jl_ exp (—%) [ |
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Ex: Let X be the amount of snow which falls on Syracuse. We assume it follows a Normal distr, w/an
average of 120" and a variance of 625". What is the probability of observing X less than 80" ?

_ pf x120 _ s0-120 o
PX<80)=P ( G < s ) (standardization)
=P(Z<-1.6) = ®(-1.6) (standard CDF)

= 0.0548. Or 5.5%. (using z-score calculator on calculator.net) [
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Empirical Rule

Harvard Video: youtube com/watch?v=72QjzHnY vLO&list=PL2SOU6wwxBOuwwHSOK TQ6ht66K WxbzTlo&index=14

§5.5 - Exponential Distr

The Exponential distr is a cont counterpart to the Geometric distr.
Recall - Geometric Rv: counts # of failures before first success in a sequence of Bernoullis: P(X = k) = ¢*p.

Exponential Rv: Now we’re waiting for success in cont time, where they arrive at a rate of A successes per unit time.
Exponential X represents waiting time until the first success.

Def (Exponential Distr): Cont X has Exponential distr w/parameter A (where A > 0) if its PF is:
f(H) = 2e™™, t > 0. We denote this: X ~ Expo(1).

The corresponding CDF is F(f) = 1 —e™, ¢ > 0.
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Expo(1) PDF and CDF. (similar to Geometric PMF and CDF)

Generalize: Location-scale transformation? Can’t translate since Exponential rvs have support on (0, ).
However, we can scale. For A, if X ~ Expo(1), then Y := % ~ Expo(R).

Proof: Must show that Y has CDF of Expo(1).



P(Y<y)=P(5 <)
=PX<A)=1-e'™ for y>0. |
Conversely: If Y ~ Expo(A), then AY ~ Expo(1).  (similar proof)
Mean/Var of X ~ Expo(1) and Y ~ Expo(1)
The mean and variance of Expo(1) are 1.
Proof: E(X) = I: te~'dt

=—tee’|§ - J-OOO(—eft)dt (integration by parts)

L'H © ot g — ot _
—O+Ioe dt = -l = 1.

E(X?) = J.;O e ldt = 2, (integration by parts)
So, Var(X) = E(X?) — (EX)* = 1. [
The mean and variance of ¥ ~ Expo(A) are - and %, resp.

Proof: E(Y) = E(5) = —E(X) = —+, and Var(Y) = Var(<) = /ll—zVar(X) = /11—2 [ |
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Memoryless: Even if you’ve waited for hrs or days without success, success isn’t anymore

likely to arrive soon. (recall in discrete flipping of coin, waiting for heads)

Def (Discrete Memoryless Property): A discrete distr of X is memoryless if: ®

P(X>j+k|X>j)=P(X > k) for all nonnegative integers j, k.

So the prob of it taking more than 5 = 3 + 2 flips to get a heads if you’ve already flipped 3 times is
the same as the prob of it taking more than 2 flips to get a heads. The three earlier failed flips don’t
help your probability.



Def (Cont Memoryless Property): A cont distr of X is memoryless if:
PX>s+t|X>s5)=PX=>1t)forall s,t > 0.

In particular, the Exponential distr has the memoryless property.

Proof: Let X ~ Expo(1). Then: P(X > s+t| X >5) = ?

B P(X>s+t, X>5)

P(X>s)
_ POEst) _ 1(eMOM) i) e Me g 1 (1 _ oA — >
T TP (e h) | ek s € =1-(1-e*)=PX=1). |

Thm: If cont X is positive w/memoryless property, then X has an Exponential distr.

[Proof in Book] ( @ but positive discrete Geometric rv ALSO has it)

Ex (hiccups, cont): Suppose you have a hiccup every 30 secs on average.

a. Assuming you just hiccuped, what’s the prob your next hiccup is less than 40 secs away? (}?:{]
1
Rate: how many hiccups per second?

A= L w90, P(X < 40) = 1 —e w0 % 0.7364.

b. If it’s been 40 seconds since your last hiccup, what’s the prob of waiting at least another 20 seconds?
Using the memoryless property, P(X > 60|X > 40) = P(X > 20) = e 3w ~ 0.5134.

c. What’s prob of hiccuping 4 times over the next minute?
This is a Poisson distr with two hiccups per minute on average. So A = 2.

Thus, P(Y = 4) = <2 ~ 0.09. O

Harvard Video: youtube.com/watch?v=bMénFDjvEns&list=PL2S0aU6wwxB0uwwHS0K TQ6ht66K Wxbz Tlo&index=17




What did we learn?
¢ Normal Distr N(u, 02): PF/CDF/Mean/Var
¢ Normal symmetry properties, standardization, empirical rule
¢ Exponential Distr: PF/CDF/Mean/Var
¢ Memoryless Property




