Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture

- ♦ Random Vars (rvs)
- ♦ Discrete Rvs
- ♦ Prob Mass Functions (PFs)
- ♦ Valid PFs

§3.6 - Cumulative Distribution Functions (CDFs)

What's the prob that X is less than some value x?

Def (**Cumulative Distr Function**, **CDF**): A CDF of X, denoted F_X is given by $F_X(x) := P(X \le x)$. Or just $F(x) := P(X \le x)$.

PF in red, CDF in blue

Ex (**CDF**): Let *X* have the following PF:
$$f(x) = \begin{cases} \frac{\sqrt{x}}{10} & \text{for } x = 1,4,9,16 \\ 0 & \text{otherwise.} \end{cases}$$

Find the CDF F(x) of X. And plot it.

$$F(x) = \begin{cases} 0.1 & x < 1 \\ 0.3 & 1 \le x < 4 \\ 0.6 & 4 \le x < 9 \\ 1 & 9 \le x < 16 \end{cases}$$

From PF \rightarrow CDF: To find $P(X \le 4.5)$, which is the CDF evaluated at 4.5, we sum the PF over all values of support that are less than or equal to 4.5. So, $P(X \le 4.5) = P(X = 1) + P(X = 4) = \frac{\sqrt{1}}{10} + \frac{\sqrt{4}}{10} = \frac{3}{10}$.

More generally, the value of the CDF at an arbitrary point x (so, $P(X \le x)$) is the sum of the heights of the vertical bars of the PF at values less than or equal to x.

From CDF \rightarrow PF: The height of a jump in the CDF at x is equal to the value of PF at x.

In the plot below, the height of the jump at 2 is same as height of corresponding vertical bar in the PF. Flat regions of CDF correspond to values outside the support, so PF is equal to 0 there.

Ex:

Thm (Valid CDFs): Any CDF *F* is:

- ♦ Increasing: If $x_1 \le x_2$, then $F(x_1) \le F(x_2)$. (since probs are positive)
- **Right-Continuous**: As in above figure, CDF is continuous except possibly having some jumps. At jumps, the CDF is continuous from the right: for any a, we have: $F(a) = \lim_{x \to a^+} F(x)$.
- Convergence to 0 and 1 in the limits: $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to \infty} F(x) = 1$.

[Proofs in Book]

Harvard Video: youtube.com/watch?v=LX2q356N2rU&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=9

§3.7 - Functions of Random Variables

What if we add two rvs X + Y?

Just add the result! How about X^2 , or $\frac{\sqrt{X}}{\ln Y^2}$? And are the result rvs ?!?

Yes! A function f(X) of a rv X **IS** a rv. For example: X^2 , e^X , $\sin(X)$, etc.

Def (Function of a Rv): For an experiment w/sample space S, a rv X, and $g : \mathbb{R} \to \mathbb{R}$, we define Y := g(X). Y is a rv that maps S to g(X(S)) for all $S \in S$.

This is a composition of functions. We are saying, "first apply X(s), then apply g(x)."

If g is a **one-to-one** function, the support of Y is the set of all g(x) with x in the support of X.

The graph below depicts the PFs for two rvs. For the first, X has support $\{1, 2, 3\}$. For the second, g(X) = X + 3, has support $\{4, 5, 6\}$.

PMF for discrete random variable X

Ex (**One to One**): Define X w/PF: $f_X(x) = \begin{cases} \frac{x}{6} & \text{for } x = 1, 2, 3 \\ 0 & \text{otherwise.} \end{cases}$

Let Y = 3X (one to one!), what is the PF of Y?

Solution: Notice our Y values are $\{3, 6, 9\}$.

So
$$P(Y = 3) = P(3X = 3) = P(X = 1) = \frac{1}{6}$$
,

$$P(Y = 6) = P(X = 2) = \frac{2}{6}$$
, and $P(Y = 9) = P(X = 3) = \frac{3}{6}$.

So,
$$f_Y(y) = \begin{cases} \frac{y}{3.6} & \text{for } y = 3,6,9\\ 0 & \text{otherwise.} \end{cases}$$

Sanity check:
$$\frac{3}{18} + \frac{6}{18} + \frac{9}{18} = 1$$
.

Strategy: To find the PF of a rv w/unfamiliar distr: express the rv as a one-to-one function of a known distr.

Ex (Random Walk). A particle moves n steps on a number line. It starts at 0, and at each step it moves 1 to the right or left, with equal prob's. Assume all steps are indep. Let Y be it's position after n steps.

Find the PF of Y.

Solution: Consider each step to be a Bernoulli trial, where right is a "success" and left a "failure."

The # of steps the particle takes to the right is a $Bin(n, \frac{1}{2})$ rv, which we name X.

If X = j, then we have j steps to the right and n - j to the left, giving a final position: j - (n - j) = 2j - n.

So we can express Y as a one-to-one function of X: Y = 2X - n. Since X takes values in $\{0, 1, 2, ..., n\}$, Y takes values in $\{-n, 2 - n, 4 - n, ..., n\}$.

The PF of Y can then be found from the PF of X: $P(Y = k) = P(2X - n = k) = P(X = \frac{n+k}{2}) = \binom{n}{\frac{n+k}{2}} \left(\frac{1}{2}\right)^n$ if k is an integer between -n and n (inclusive) such that n + k is an even number.

If g is NOT one-to-one?

Then, if $g(x_1) = y$, there may be another x_2 such that $g(x_2) = y$ (!!)

$$S \to X(s) \in \{x_1, x_2, x_3\}.$$
 Then:

$$\{x_1, x_2, x_3\} \rightarrow g(x_i)$$

Thm (**PF** of g(X)). Let X be discrete and $g: \mathbb{R} \to \mathbb{R}$. Then the support of g(X) is the set of all y such that g(x) = y for at least one x in the support of X. The PF of g(X) is: $P(g(X) = y) = \sum_{x:g(x)=y} P(X = x)$, for all y in the support of g(X).

Ex (**Not One to One**): Define
$$X$$
 w/PF: $f_X(x) = \begin{cases} \frac{|x|}{32} & \text{for } x = -10, -5, 1, 0, 1, 5, 10 \\ 0 & \text{otherwise.} \end{cases}$

Let $Y = X^2$, what is the PF of Y?

Solution: Notice our Y values are $\{100, 25, 1, 0\}$ with 100, 25 and 1 getting double probabilities.

So
$$P(Y = 100) = 2 \cdot \frac{|10|}{32} = \frac{10}{16}$$
, $P(Y = 25) = 2 \cdot \frac{|5|}{32} = \frac{5}{16}$, and $P(Y = 1) = 2 \cdot \frac{|1|}{32} = \frac{1}{16}$

So,
$$f_Y(y) = \begin{cases} \frac{\sqrt{y}}{16} & \text{for } y = 100, 25, 1, 0 \\ 0 & \text{otherwise.} \end{cases}$$

Sanity check:
$$\frac{\sqrt{100}}{16} + \frac{\sqrt{25}}{16} + \frac{\sqrt{1}}{16} + \frac{\sqrt{0}}{16} = 1$$
.

Def (Function of Two Rvs). Given an experiment with sample space S, if X and Y map $s \in S$ to X(s) and Y(s) respectively, then g(X, Y) is the rv that maps S to g(X(s), Y(s)).

Ex (Maximum of Two Die Rolls).

s	X	Y	$\max(X, Y)$
(1,2)	1	2	2
(1,6)	1	6	6
(2,5)	2	5	5
(3, 1)	3	1	3
(4, 3)	4	3	4
(5,4)	5	4	5
(6, 6)	6	6	6

•		··		. ::	
				:: ::	
				$\mathbf{::}$	∷:
•			::	∷	::: :::
₩ •		. :		∷	: :
!! •	. .	.	:: ::	:::	:::

$$P(\max(X, Y) = 1) = \frac{1}{36}$$
.

$$P(\max(X, Y) = 2) = \sum_{s:\max(s)=2} P(s)$$

$$= P(X = 2, Y = 2) + P(X = 1, Y = 2) + P(X = 2, Y = 1)$$

$$= \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{3}{36}.$$

$$P(\max(X, Y) = 3) = \frac{5}{36}$$
.

$$P(\max(X, Y) = 4) = \frac{7}{36}$$
.

$$P(\max(X, Y) = 5) = \frac{9}{36}$$
.

$$P(\max(X, Y) = 6) = \frac{11}{36}$$
.

Note:
$$P(\max(X, Y) = 5) = P(X = 5, Y \le 4) + P(X \le 4, Y = 5) + P(X = 5, Y = 5)$$

$$= 2P(X = 5, Y \le 4) + \frac{1}{36}$$
 (symmetry)

$$=2\left(\frac{4}{36}\right)+\frac{1}{36}=\frac{9}{36}.$$

Common error: to confuse a rv w/its distr.

- The PF of 2X cannot be obtained by multiplying the PF of X by 2.
- If X, Y have the same distr, it's not (necessarily) true that X = Y.

§3.8 - Independence of Rvs

Similar to indep of events examined earlier. Intuitively, indep rvs X and Y means: if you know the value of X, this gives you no info about the value of Y.

For example, seeing the result of flipping a (fair) coin (X = 1, heads or X = 0, tails) gives you no info about the next flip (Y).

Def (Indep of Two Cont. Rvs): Continuous rvs X and Y are indep if $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$, for ALL $x, y \in \mathbb{R}$. (Recall P(A,B) = P(A)P(B) for indep events)

Repeating from same spot, indep.

Throw from previous landing spot, not indep.

Def (Indep of Two Discrete Rvs): Discrete rvs X and Y are indep if P(X = x, Y = y) = P(X = x)P(Y = y), for all x, y with x in the support of X and y in the support of Y.

Def (Indep of Many Rvs): Continuous rvs $X_1, ..., X_n$ are indep if $P(X_1 \le x_1, ..., X_n \le x_n) = P(X_1 \le x_1) ... P(X_n \le x_n)$, for $ALL x_1, \ldots, x_n \in \mathbb{R}$. (hence only one equation, as opposed to many eqs for events/discrete rvs)

For infinitely many cont. rvs, we say that they are indep if every finite subset of the rvs is indep.

 \mathfrak{D} If X_1, \ldots, X_n are indep, then they are pairwise indep, i.e., X_i is indep of X_i for $i \neq j$.

The idea behind proving that X_i and X_j are indep is to let all the x_k (other than x_i, x_j) go to ∞ in the definition of indep, since we already know $X_k < \infty$ is true (though it takes some work to give a complete justification for the limit). But pairwise indep does not imply indep in general, as we saw in Chapter 2 for events.

 $\mathbf{E}\mathbf{x}$ (Dice Roll Indep). In a roll of two fair dice, if X is the # on the first die and Y is the # on the second die, is X + Y independent of X - Y??

Solution: No. Note that:

$$0 = P(X + Y = 12, X - Y = 1)$$

$$\neq P(X+Y=12)P(X-Y=1) = \frac{1}{36} \frac{5}{36}$$
.

Def (iid): We'll often work with rvs that are indep and have the same distr. We call such rvs indep and identically distributed, or iid for short.

Repeated throws are iid

Thm (**Rv** Function Indep): If X and Y are indep rvs, then any function of X is indep of any function of Y. For example X^2 would be indep from $\sqrt{\ln Y}$.

Thm (Binomial via Bernoulli): If $X \sim Bin(n,p)$, viewed as # of successes in n indep Bernoulli trials w/success prob p, we can write $X = X_1 + ... + X_n$ where the X_i are iid Bern(p).

Proof. Let $X_i = 1$ if the *i*th trial was a success, and 0 if the *i*th trial was a failure.

It's like we have a person assigned to each trial, and ask each to raise their hand if their trial was a success.

If we count the raised hands (which is the same as adding up the X_i), we get the total # of successes.

Activity 7

Thm (Indep Binomial Addition). If $X \sim Bin(n,p)$, $Y \sim Bin(m,p)$, and X is indep of Y, then $X + Y \sim Bin(n+m,p)$.

Proofs (1 more in book)

Representation: Represent both X&Y as sum of i.i.d. Bern(p) rvs: $X = X_1 + ... + X_n$ and $Y = Y_1 + ... + Y_m$, where X_i and Y_j are all iid Bern(p).

Then X + Y is the sum of n + m iid Bern(p) rvs, so its distr, by previous thm, is Bin(n + m, p).

Story: By the Binomial story, *X* is # of successes in *n* indep trials and *Y* is # of successes in *m* additional indep trials, all w/same success probability.

So X + Y is total # of successes in the n + m trials, which is the story of the Bin(n + m, p) distr.

Def (Conditional Indep of Rvs). Rvs X and Y are conditionally indep given Z if for all $x, y \in \mathbb{R}$ and all z in the support of Z, $P(X \le x, Y \le y | Z = z) = P(X \le x | Z = z)P(Y \le y | Z = z)$.

For discrete rvs, an equivalent definition is to require: P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z).

Def (Conditional PF). For any discrete rvs X and Z, the function P(X = x | Z = z), when considered as a function of x for fixed z, is the conditional PF of X given Z = z.

• As with events, indep of rvs does not imply conditional indep (or vice versa).

Ex (Matching pennies). Consider a game called matching pennies. Each of two players, A and B, has a fair penny. They flip their pennies independently. If the pennies match, A wins; otherwise, B wins. Let X be 1 if A's penny lands Heads and -1 otherwise, and define Y similarly for B.

Let Z = XY, which is 1 if A wins and -1 if B wins. Then X and Y are unconditionally indep, but given Z = 1, we know X = Y (the pennies match). So X and Y are conditionally dependent given Z.

What did we learn?

- ♦ CDFs and Valid CDFs
- ♦ Functions of rvs
- ♦ Indep of rvs

