Probability Theory

Instructor: Jodin Morey = moreyj@lemoyne.edu

Previous Lecture
¢ Indep of Events (conditional indep)
¢ Conditioning as Problem-Solving
Wishful Thinking/First Step Analysis
¢ Coherency of Bayes’ Rule
¢ Pitfalls and Paradoxes

§3.1 - Random Variables

To simplify notation and many calculations, we introduce the idea of a random variable.

"Random variables" are not really random, but rather associated with a random process (or "experiment").

(random just expresses our inability to predict something). They’re also not really variables, but rather functions.

Def (Random Var). Given an experiment with sample space S,

a random var (rv) X is a function from § to R.

Ex (Coin Tosses). Imagine an experiment where we toss a fair coin twice.
The sample space is S = {HH, HT, TH, TT}.

¢ Let Xbe # of Heads. Then X is a rv w/values 0, 1, and 2.
As a function, X assigns 2 to the outcome HH,
1to HT and TH, and O to 77.
That is, X(HH) = 2, X(HT) = X(TH) = 1, and X(TT) = 0.

¢ Let Ybe # of Tails. In terms of X:



Y = 2 - X. In other words, Y(s) = 2 — X(s) forall s € S.

¢ Let /be 1 if first toss is Heads, and 0 otherwise.

Then 7 assigns 1 to HH and HT, and 0 to TH and TT.

This is an indicator rv since it indicates whether the first toss is Heads. 1 means "yes," 0 means "no."

We can also encode the sample space as S» = {(1,1),(1,0),(0,1),(0,0)}, where 1 is Heads & 0 is Tails.
Then we can give explicit formulas for X, Y,/ :

X(s1,52) = 51 +52, Y(s1,82) =2 —s1— 52, I(s1,52) = s1, where (s1,52) € S».
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Rv assigns #s to outcomes in S

The sample space S can be multidimensional, and the outcomes s € S may be non-numeric (color, labels, etc.).

So, rvs provide numerical summaries of an experiment.

Plinko Random Process
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If we send many coins down (repeat X many times), we can discover X’s @ ‘

distr. It’s the shape below the plinko board. It looks mound shaped (normal). 200
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Harvard Video (2nd half): youtube.com/watch?v=PNrqCdslGi4&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTlo&index=8

§3.2 - Distr’s & Prob Mass Functions (PFs)

One can classify rvs as being discrete or continuous. In this section we’ll focus on discrete rvs.



Def (Discrete Rv): X is discrete if there is a finite list of values a,a5,...,a, or an infinite list of values

ai,as,... such that P(X = b) = 0 for any b not in the list of values. So the rv only
take on the values in the discrete list a;.

If X is discrete, then the set of values x such that P(X = x) > 0 is called the support of X.
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In chpt 5, we’ll look at continuous rvs that can take on any value in R.
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Def (Prob Mass Function, PF): The PF of a discrete rv X is given by px(x) = P(X = x).
Note this is positive if x is in support of X, and 0 otherwise.

Ex (Coin Tosses Cont’d). We’ll find PFs of all rvs in the "Coin Tosses"

example in §3.1 above, (involving two fair coin tosses).

¢ X the # of Heads.

Since X = 0if TT occurs, X = 1 if HT or TH occurs, and X = 2 if HH occurs, the PF of X is:

px(0) = P(X=0) = |,
px(1) =PX=1) =1,
pX(z) =P(X= 2) = %7

and px(x) = 0 otherwise.

¢ Y =2-X, the # of Tails.

Reasoning as above or using the fact that P(Y = y) = PR -X=y) = P(X =2-y) = px(2 -y),
the PF of Yis:



pr(0) = P(Y =0) = +,
pY(l) :P(Y: 1) = %a
pr2) =P(Y=2) =+

2

and py(y) = 0 otherwise.

Note that X and Y have the same PF (px and py are the same function) even though X and Y are not
the same rv (X andY are different functions from {HH,HT,TH,TT}; — R).

0 Rvs concern themselves with what #s go w/different outcomes.

PFs concern themselves w/the frequency with which those #s occur.
¢/, the indicator of the first toss landing Heads.

Since [ = 0if TH or TT occurs, and 1 if HH or HT occurs, the PF of / is:
pi(0) = P =0) = &,
pl(l) :P(I: 1) = %7

and p(i) = 0 otherwise.
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PMFs for X, Y, I

Thm (Valid PFs). Let X be discrete w/support x1,x2, .... The PF py must satisfy:

¢ Nonnegative: px(x) > 0 if x = x; for some x; in the support, and px(x) = 0 otherwise,

¢ Sumsto1: 3.7 px(x) = L. S
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Proof. First criterion is true since prob is always nonnegative.

Second is true since X must take on some value, and the events {X = x;} are disjoint, so:



2 PX=x)=PUL X=x})=PX=xjor X=x; 0r...) =1. W

Conversely, if distinct values x1,x2, ... are specified and we have a function satisfying the two criteria above, then this function is
the PF of some rv, we will show how to construct such a rv in Chapter 5.

The PF is one way of expressing the distribution of a discrete rv. In particular:

Prob Xis in a Set: Given a discrete X and a set B € R, if we know the PF of X we can find P(X € B), by summing up
the heights of the vertical bars in B in the plot of the PF. (You’ll do this in HW 4!)

Ex (PF of Two Dice): Let 7 be the sum of two fair die rolls. 0

Assume we’ve already calculated the PF of T as:

P(T=2)=P(T=12) = -, 5]E9]62) 9|0 €3
P(T=3)=P(T=11) =2, 2|3|4]5]6]7
P(T=4)=P(T=10) = <, 3[|4f5([6]7]8
P(T=5)=P(T=9) = 4%, Jiad KA R E
P(T=6) = P(T—8) - <, |5 [e|7]8]afio
PT=7) - & |6|7]8|q|iofi
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Sample Space
What’s the prob that 7' is in the interval [1,4]?

So, T has support on {2,3,4}. We know the prob of these values from above, so:
P(lST§4)=P(T=2)+P(T=3)+P(T=4):%. [

Harvard Video: youtube.com/watch?v=k2BBO0p8byG A &list=PL2SOU6wwxB0uwwH80K TQ6ht66K WxbzTlo&index=9

What did we learn?
¢ Random Vars
¢ Discrete Rvs
¢ Prob Mass Functions, PFs
¢ Valid PFs




