Probability Theory

Instructor: Jodin Morey moreyj@lemoyne.edu

Previous Lecture

- Sample Spaces ۲
- $\frac{\text{\# of outcomes favorable to } A}{\text{total \# of outcomes in } S}$ Naive definition of prob: ۲
- How to count: multiplication rule
- Adjusting for over-counting

Counting Methods	w/o repl	w/repl
Order matters	$n(n-1)\dots(n-k+1)$	n^k
Order doesn't matter	$\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k!} = \frac{n!}{(n-k)!k!}$	$\binom{n+k-1}{k}$

emories

§1.5 - Story Proofs: Proof by Interpretation

Story proofs can avoid messy calculations and go further than an algebraic proof toward explaining why the result is true.

Story proofs are fully valid mathematically.

Ex (Team): For any nonnegative integers *n* and *k* with $k \le n$, we have: $\binom{n}{k} = \binom{n}{n-k}$.

Story proof: Consider choosing a team of size k from a group of n people. We know there are $\binom{n}{k}$ possibilities.

Another way to choose is to specify the n - k people who are *not* on the team.

Specifying who is on the team also determines who is not on the team, and vice versa.

So the two sides of $\binom{n}{k} = \binom{n}{n-k}$ are equal, as they are two ways of counting the same thing.

Ex (**Team Captain**): For any positive integers n&k with $k \le n$, we have: $n\binom{n-1}{k-1} = k\binom{n}{k}$.

Story proof : Consider a group of *n* people, from which a team of *k* will be chosen, one of whom will be captain.

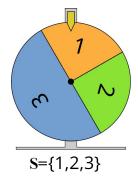
We could first choose the team captain and then choose the remaining k - 1 team members; this and the multiplication rule gives us the left-hand side (LHS).

Equivalently, we could first choose *k* team members $\binom{n}{k}$ ways), then choose one of them to be captain (*k* ways). This gives the right-hand side (RHS).

Harvard Video: youtube.com/watch?v=FJd_1H3rZGg&list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo&index=3

§1.6 - Non-Naive (General) Definition of Probability

What if the sample space *S* is infinite (e.g., \mathbb{Z} , \mathbb{R}^2 , or [0,1)), or the outcomes are not equally likely? Ditch the naive definition!



Prob space w/spinning disk as random process.

Outcomes not equally likely.

S = [0, 1). Infinitely many outcomes.

Def (General Def of Probability): A prob space consists of a sample space S and prob function P,

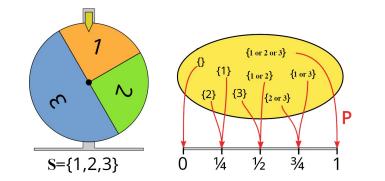
which takes an event $A \subseteq S$ (as input) and returns P(A), a real number between 0 and 1 (as output).

P must also satisfy axioms:

All-or-Nothing: $P(\emptyset) = 0$, P(S) = 1.

Disjoint: If A_1, A_2, \ldots are disjoint events, then: $P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$.

(Events being disjoint means they are mutually exclusive: $A_i \cap A_j = \emptyset$ for $i \neq j$.)



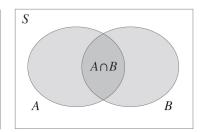
S

Thm (Properties of Probability): For any events *A* and *B*: **Complement**: $P(A^c) = 1 - P(A)$.

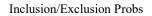
Subset: If $A \subseteq B$, then $P(A) \leq P(B)$.

Inclusion-Exclusion: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

 $B \cap A^c$ B



Subset Probs

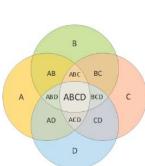


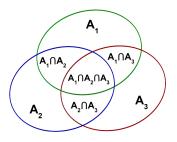
[Proofs in book, they follow from axioms]

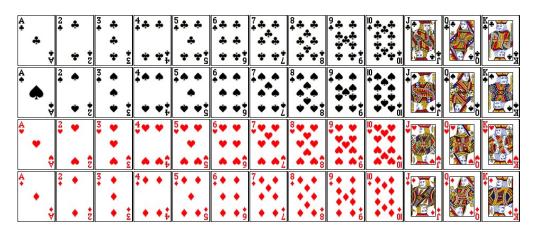
Thm (Gen. Inclusion-Exclusion): For any events A_1, \ldots, A_n ,

 $P(\bigcup_{i=1}^{n} A_i) = \sum_{i \in j} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} P(A_1 \cap \dots \cap A_n).$

[Proof in Chpt 4]







Ex (Void Suit): A player is dealt a 13-card hand from a well-shuffled deck of cards. What's the prob the hand is void in at least one suit ("void in a suit" means having no cards of that suit)?

Solution: Let S, H, D, C be the events of being void in Spades, Hearts, Diamonds, Clubs, respectively.

We want to find $P(S \cup D \cup H \cup C)$. By inclusion-exclusion:

$$P(S \cup D \cup H \cup C) = P(S) + \dots + P(C)$$

- P(S \cap H) - \dots - P(H \cap C)
+ P(S \cap H \cap D) + \dots + P(D \cap H \cap C)
- P(S \cap H \cap D \cap C)

$$= 4P(S) - 6P(S \cap H) + 4P(S \cap H \cap D) - P(S \cap H \cap D \cap C).$$
 (by symmetry)

Prob of being void in a specific suit is:

 $P(S) = \frac{\text{\# of favorable outcomes}}{\text{total \# of outcomes}} = \frac{\text{choosing 13 cards from the 39 not in the suit}}{\text{choosing 13 cards from 52 in deck}} = \frac{\binom{39}{13}}{\binom{52}{13}}.$

Prob of being void in 2 specific suits is:

 $P(S \cap H) = \frac{\binom{26}{13}}{\binom{52}{13}}.$

Prob of being void in 3 specific suits is:

$$P(S \cap H \cap D) = \frac{\binom{13}{13}}{\binom{52}{13}} = \frac{1}{\binom{52}{13}}.$$

The last term $P(S \cap H \cap D \cap C)$ is 0 since it's impossible to be void in everything.

So prob is
$$4\frac{\binom{39}{13}}{\binom{52}{13}} - 6\frac{\binom{26}{13}}{\binom{52}{13}} + \frac{4}{\binom{52}{13}} \approx 0.051.$$

Activity 4

Recall

Axioms of Probability

All-or-Nothing:
$$P(\emptyset) = 0$$
, $P(S) = 1$.

Disjoint: If
$$A_1, A_2, ...$$
 are disjoint events, then:
 $P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j).$

Properties of Probability - For any events A and B: Complement: $P(A^c) = 1 - P(A)$.

Subset: If $A \subseteq B$, then $P(A) \leq P(B)$.

Inclusion-Exclusion:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

What did we learn?

- ♦ Story Proofs
- General definition of probability
- General properties of probability

