
Theory of Probability Notes

These are notes made in preparation for oral exams involving the following topics in probability: Random walks,

Martingales, and Markov Chains. Textbook used: “Probability: Theory and Examples," Durrett.

Durrett Chapter 4 (Random Walks).

Random Walk: Let X1, X2,� be iid taking values in R
d and let Sn � X1 ���Xn. Sn is a random walk.

This section is concerned with the properties of the sequence S1���, S2���,�

Stopping Times

Stopping Time: Let ��,FFFF, �FFFFn�n�0,P� be a filtered probability space. A stopping time T : � � Z� � ���� is a random

variable such that �T � n� � FFFFn for all n � 0, or equivalently, �T � n� � FFFFn for all n � 0.

� The constant times (e.g., T � 10) are always stopping times.

� Let �Xn�n�0 be an adapted process. Fix A � BBBBR. Then the first entry time into A,

notated as TA :� inf�n � 0 : Xn � A�, with the convention that inf� � �� is a stopping time.

Associated with each stopping time N is a �-field FFFFN � information known at time N. FFFFN is the collection of sets A that
have A � �N � n� � FFFFn, 	n � �. When N � n, A must be measurable with respect to information known at time n.

Stopping Times Lemma: Let S, T, �Tn�n�0 be stopping times on the filtered probability space ��,FFFF, �FFFFn�n�0,P�. Then

the following are stopping times: i� S 
 T :� min�S, T�, ii� S � T :� max�S, T�,

iii� S � T, iv� lim infn Tn and infn Tn, v� lim supn Tn and supn Tn.

Proof of i) �S 
 T � n� � ��S � n�c � �T � n�c �c � FFFFn. �

Notational Conventions for Measurable Space �S,SSSS� : Assuming the random sequence S1���,S2���,� defined
above, Let � :� ���1,�2,� � : �i � S�, FFFF :� SSSS � SSSS �� , P :� � � � �� where � is the distribution of X i, and
Xn��� �: �n.

Finite Permutation of N: A map � from N onto N so that ��i� � i for only finitely many i.

Permutable Event A: An event A � FFFF is permutable if �
1A � �� : �� � A� � A for any finite permutation �.

Symmetric Function: A function f : Rn � R is said to be symmetric if f�x1, x2,� , xn� � f�x��1�, x��2�,� , x��n�� for each
�x1,� , xn� � R and for each permutation � of �1, 2,� , n�.

Exchangeable �-field �: Let X1, X2,� be a sequence of r.v.s on ��,FFFF,P�. Let Fn :� f : Rn� R symmetric m’ble ,

and �n :� ��Fn, Xn�1, Xn�2,� �. The exchangeable �-field � is defined as � :� �n�1
� �n.

The next results shows that for an iid sequence, there is no difference between � and TTTT, they are both trivial.

Hewitt Savage 0-1 Law (Gen. of Kolmogorov 0-1) D4.1.1: Let � be the exchangeable �-field of iid X1, X2,� Then
P�A� � �0, 1� for any A � �.

Random Walk Possibilities (Consequence of the HSL) D4.1.2: For random walks on R, there are 4 possibilities, one of

which has probability 1. i) Sn � 0 for all n, ii/iii) Sn � ��, iv) 
� � lim infSn � lim sup Sn � �.

Proof: Theorem D4.1.1 implies lim sup Sn is a constant c � �
�,��. Let Sn
� � Sn�1 
 X1. Since Sn

� has the same distribution

as Sn, it follows that c � c 
 X1. If c is finite, subtracting c from both sides we conclude X1 � 0 and i) occurs. Turning the
last statement around, we see that if X1 is not equivalently zero, then c � 
� or �. The same analysis applies to the
lim inf. Discarding the impossible combination lim sup Sn � 
� and lim inf Sn � ��, we have proved the results. �
Exercises D4.1.1-7

Theorem D4.1.3: Let X1, X2,� be iid, FFFFn � ��X1,� , Xn� and T be a stopping time with P�T � �� 	 0. Conditional on
�T � ��, XT�n, n � 1 is independent of FFFFT and has the same distribution as the original sequence.
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Let T a stopping time, T0 :� 0, Tn��� :� Tn
1��� � T��Tn
1���� for n � 1, and tn��� :� T��Tn
1����, we now extend
D4.1.3:

Theorem D4.1.4: Suppose P�T � �� � 1. Then the "random vectors" Vn � �tn, XTn
1�1,� , XTn � are independent and
identically distributed.

Proof: It is clear from theorem D4.1.3 that Vn and V1 have the same distribution. The independence also follows from

theorem D4.1.3 and induction since V1,� , Vn
1 � FFFF�Tn
1 �. �

Exercises D4.1.8-11

Wald’s Identity: Let �1,�2,� be iid with finite mean � :� E��n �. Set �0 and let Sn � �1 ����n. Let T be a stopping
time with E�T� � �. Then, E�ST � � �E�T�.

Exercises D4.1.12-14

Theorem D4.1.6 (Wald’s 2nd Equation): Let �1,�2,� be iid with � :� E��n � � 0, E��n
2 � �: �2 � �, and

Sn � �1 � �2 �� . If T is a stopping time with E�T� � �, then E�ST
2 � � �2E�T�.

Theorem D4.1.7 (used in the proof of D4.1.6): Let X1, X2,� be iid with E�Xn � � 0 and E�Xn
2 � � 1, and let

Tc � inf n � 1 : |Sn | 	 cn
1
2 , then E�Tc �

� � for c � 1,

� � for c � 1.

Lemma D4.1.8: If T is a stopping time with E�T� � �, then
E XT
n

2

E�T
n�
� 0.

Recurrence

Recurrent Value: x � S is considered recurrent if, for every � 	 0, we have P |Sn 
 x| � � i.o. � 1.

Possible Value (of random walk): x � S is a possible value if, for any � 	 0, �n such that P�|Sn 
 x| � �� 	 0.

Let VVVV be the set of all recurrent values, and UUUU be the set of all possible values, then:

Theorem D4.2.1: VVVV is either � or a closed a subgroup of Rd. IfVVVV is a closed subset, then VVVV � UUUU.

Transient/Recurrent: If VVVV � �, the random walk is said to be transient, otherwise it is called recurrent.

Let 	0 � 0 and 	n � inf�m 	 	n
1 : Sm � 0� be the time of the nth return to 0.

Theorem D4.2.2: For any random walk, the following are equivalent:

i) P�	1 � �� � 1, ii) P Sm � 0 i.o. � 1, and iii) �
m�0

�
P�Sm � 0� � �.

Proof: If P�	1 � �� � 1, then P�	n � �� � 1 for all n and P Sm � 0 i.o. � 1. Let V :� �
m�0

�
1�Sm�0� � �

n�0

�
1�	n��� be the

number of visits to 0, counting the visit at time 0. Taking expected value and using Fubini’s theorem to put the expected
value inside the sum: E�V� � �

m�0

�
P�Sm � 0� � �

n�0

�
P�	n � �� � �

n�0

�
P�	1 � ��n � 1

1
P�	1���
. The 2nd equality shows

that ii 
 iii and, in combinations with the last two, shows that if i) is false, then iii) is false (i.e.,iii 
 i ). �

Theorem D4.2.3 (6.33): The Simple (lattice) Symmetric Random Walk (SSRW) Sn on Z
d is recurrent for d � 1, 2 and is

transient for d � 3.

Examples 6.27-6.32
Exercise 6.34: Consider SSRW on Z. Show that E0�T0 � � ��. Prove the same for SSRW on Z

2.

Theorem D4.2.6: The convergence (divergence) of �nP�|Sn | � �� for any single value of � 	 0 is sufficient to determine
the transience (recurrence) of Sn.

The proof of this theorem uses the following lemmas:

Lemma D4.2.4 (Gen. of D4.2.2): If �
n�1

�
P�|Sn | � �� � �, then P |Sn | � � i.o. � 0. If �

n�1

�
P�|Sn | � �� � �, then

P |Sn | � 2� i.o. � 1.

Lemma D4.2.5: Let m be an integer � 2. Then, �
n�0

�
P�|Sn | � m�� � �2m�d �

n�0

�
P�|Sn | � ��.

Theorem D4.2.7 (Chung-Fuchs Theorem): Suppose d � 1. If the weak law of large numbers holds in the form Sn

n

p
� 0,

then Sn is recurrent.

4/22/2020 Jodin Morey 2



Theorem D4.2.8: If Sn is a random walk in R
2 and Sn

n
1
2


 a non-degenerate normal distribution (non-degenerate means

dim support�limn Sn/ n � � 2), then Sn is recurrent.

Remark: The conclusion is also true if the limit is degenerate, but in that case, the random walk is essentially one-(or
zero)-dimensional, and the result follows from the Chung-Fuchs Theorem.

Let 
 :� E�e itXj � be the characteristic function of one of the steps of the random walk, then we have:

Theorem D4.2.9: Let � 	 0. Sn is recurrent if and only if �
�
�,��d

Re 1
1

�y� dy � �.

Theorem D4.2.10: Let � 	 0. Sn is recurrent if and only if supr�1 �
�
�,��d

Re 1
1
r
�y�

dy � �.

The next two lemmas are used in the proof of D4.2.10:

Lemma D4.2.11 (Parseval Relation): Let � and � be probability measures on R
d with characteristic functions 
 and 
.

Then: �
�t���dt� � �
�x���dx�. Proof: Since e it�x is bounded, by Fubini:

�
�t���dt� � � � e itx��dx���dt� � � � e itx��dt���dx� � �
�x���dx�. �
Lemma D4.2.12: If |x | � �

3
, then 1 
 cosx � x2

4
. Proof: It suffices to prove the results for x 	 0. If z � �

3
, then cos z � 1

2
,

so sin y � �
0

x
cos zdz � y

2
, and 1 
 cosx � �

0

x
sin ydy � �

0

x y

2
dy � x2

4
. �

Truly Three Dimensional Random Walk: A random walk Sn in R
3 is considered truly three-dimensional if the

distribution of X1 is P�X1 � � � 0� 	 0, for all nonzero vectors �.

Theorem D4.2.13: No truly three-dimensional random walk is recurrent.

In conclusion:

� Sn is recurrent in d � 1 if Sn/n
p
� 0.

� Sn is recurrent in d � 2 if Sn/ n 
 a non-degenerate normal 2D distribution.

� Sn is transient in d � 3 if it is “truly N-dimensional."
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Durrett Chapter 5 (Martingales).

Conditional Expectation: Consider a probability space ��,FFFF, P� and a random variable X � L1��,FFFF, P�. Let G � FFFF be

a sub-�-field. We define E�X|G�, the conditional expectation of X given G, as a random variable Y such that:

i) Y is G-measurable and E|Y| � �.

ii) E�E�X|G�1A � � E�Y1A � � E�X1A � for any A � G.

Y defined in this way is also unique.

Conditional Expectation Characterizations:

� E�X|A�, where A is an event, is a scalar and the expected value of X given that A occurs.

� E�X|Y�, where Y is a r.v., is a random variable whose value at � � � is E�X|A�, where A is the event �Y � Y����.

� E�X|1A � is the case Y � 1A, and 1A��� is 1 if � � A and 0 otherwise.

This is the random variable that returns E�X|A� if � � A and E�X|Ac � if � � A.

Exercise D5.1.1: Generalize the last argument (not shown on this document, see Durrett) to show that if X1 � X2 on
B � FFFF, then E�X1 |FFFF� � E�X2 |FFFF� a.s. on B.

Absolute Continuity: Let � and � be two �-finite measures on ��,FFFF�. We say � is absolutely continuous with respect to
�, and write � �� �, if ��A� � 0 
 ��A� � 0, for each A � FFFF.

Radon-Nikodym Lemma: Let � and � be two �-finite measures on ��,FFFF�. Then � �� � if and only if there exists a

FFFF-measurable function f : � � �0,�� such that ��B� � �
B

fd�, for all B � FFFF.

Existence of Conditional Expectation: Let X � L1��,FFFF, P� and G be a sub-�-field. Then E�X|G� exists.

Exercise D5.1.2: Baye’s formula - Let G � GGGG and show that P�G|A� �
�

G
P�A|GGGG�dP

�
�

P�A|GGGG�dP
.

Properties of Conditional Expectation

Trivial Conditional Expectations:

a) If X � G, then E�X|G� � X a.s.

b) If G � ��,��, then E�X|G� � E�X�.

c) If X is independent of G, then E�X|G� � E�X� a.s.. To prove this, observe that E�X�

is G-measurable (in that the preimage of a constant is � ��,�� � G�

and for any A � G we have: E�X1A � � E�X�E�1A � � E�E�X�1A �.

Lemma 6.2.1: Suppose X and Z are independent random variables. Let 
 : �2 � � be a measurable function

such that E|
�X, Y�| � � and let g�z� � E�
�X, z��. Then: E�
�X, Z�|Z� � g�Z� a.s.

Linearity of Conditional Expectation: For L1 random variables.

Monotonicity: If X � Y and X, Y � L1, then E�X|G� � E�Y|G� a.s.

Pre-Tower Property: If FFFF � GGGG and E�X|GGGG� � FFFF, then E�X|FFFF� � E�X|GGGG�.

Tower Property: Let H � G be sub-�-fields of FFFF. Then: E�E�X|G�|H� � E�X|H� a.s.

Take out what is known: If X is G-measurable, then for any random variable Y such that E|Y| � � and E|XY| � �, we
have: E�XY|G� � XE�Y|G� a.s.

Conditional MCT: Let X, Xn � 0 be a sequence of integrable random variables and Xn 
 X. Then E�Xn|G� 
 E�X|G� a.s.

Conditional Jensen’s Inequality: If 
 : � � � is a convex function and E|X| � � and E|
�X�| � �, then
E�
�X�|G� � 
�E�X|G�� a.s.
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Lp Contraction: For p � 1, E�|E�X|G�|p � � E�|X|p �.

Conditional Fatou’s Lemma: Let Xn � 0 be integrable random variables and let lim infn Xn be integrable. Then
E�lim infn Xn|G� � lim infn E�Xn|G� a.s.

Conditional DCT: If Xn � X a.s. and |Xn | � Y for some integrable random variable Y. Then E�Xn|G� � E�X|G� a.s.

Chebyshev’s Inequality: If a 	 0, then P�|X| � a|FFFF� � a
2E�X2|FFFF�.
Exercises D5.1.3-7

Mean Square Error: Suppose that X � L2��,FFFF, P�. Then for any Y � L2��, G, P�, we have:
E �X 
 Y�2 � E �X 
 E�X|G��2 . The equality holds if and only if Y � E�X|G� a.s.

Exercises D5.1.8-11

Symmetrization by Conditional Expectation: Suppose that X1, X2,� is an iid sequence. Then for any n � k, we have:

E�f�X1, X2,� , Xk�|�n � � 1
�n�k

E��if�X i1 , X i2 ,� , X ik �|�n �, where the sum is over all k-tuples of distinct integers

1 � i1,� , ik � n and �n�k � n�n 
 1�� �n 
 k � 1� is the number of such k-tuples.

5.2 Martingales, Almost Sure Convergence

Discrete Time Martingale

Filtration: Let ��,FFFF,P� be a probability space. A filtration �FFFFn�n�0 is an increasing sequence of sub sigma fields

FFFF0 � FFFF1 ��� FFFF.

Adapted: A sequence of random variables �Xn�n�0 defined on ��,FFFF,P� is said to be adapted to the filtration �FFFFn�n�0 if

Xn is FFFFn-measurable for each n � 0.

Martingale: A sequence of random variables �Xn�n�0 defined on ��,FFFF,P� is said to be a martingale with respect to the

filtration �FFFFn�n�0 if : a) �Xn�n�0 is adapted to �FFFFn�n�0. b) E|Xn | � � for each n. c) E�Xn�1|FFFFn � � Xn a.s. for each

n.

In c) if "�" is replaced by "�" or �", then �X�n�0 is said to be a super-martingale or sub-martingale respectively.

Exercise 5.2: Show that if �Xn �n�0 is a martingale with respect to the filtration �FFFFn �n�0
, then it is also a martingale with

respect to its canonical filtration ���X0, X1,� , Xn ��n�0.

Theorem D5.2.1: If Xn is a super-martingale, then for n 	 m, E�Xn|FFFFm � � Xm.

Theorem D5.2.2: i) If Xn is a sub-martingale, then for n 	 m, E�Xn|FFFFm � � Xm. ii) If Xn is a martingale, then for n 	 m,
E�Xn|FFFFm � � Xm.

Theorem D5.2.3: If Xn is a martingale with respect to FFFFn and 
 is a convex function with E|
�Xn�| � � for all n then

�Xn� is a sub-martingale with respect to FFFFn. Consequently, if p � 1 and E|Xn |p � � for all n, then |Xn |p is a
sub-martingale with respect to FFFFn.

Theorem D5.2.4: If Xn is a sub-martingale with respect to FFFFn and 
 is a convex function with E|
�Xn�| � � for all n

then 
�Xn� is a sub-martingale with respect to FFFFn. Consequently, i) If Xn is a sub-martingale then �Xn 
 a�� is a
sub-martingale. ii) If Xn is a super-martingale, then Xn 
 a is a super-martingale.

Exercise D5.2.3: Give an example of a sub-martingale Xn so that Xn
2 is a super-martingale. Hint: Xn does not have to be

random.

Doob’s Martingale Transform: Call the sequence of random variables �Hn�n�1 predictable with respect to a filtration

�FFFFn�n�0 if Hn is FFFFn
1 measurable for each n � 1. Let �Xn�n�0 be a �FFFFn�n�0–martingale. Define

�H � X�0 � 0, �H � X�n � �
k�1

n
Hk�Xk 
 Xk
1�.

Doob’s Martingale Transform Lemma: Assume that Xn is a martingale and �H � X�n � L1 for each n. Then, �H � X�n

is a �FFFFn�n�0-martingale.
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Theorem D5.2.5: Let Xn be a super-martingale. If Hn is predictable and each Hn is bounded, then �H � X�n is a

super-martingale (similarly for sub-martingales and for martingales).

Doob’s Decomposition: Any sub-martingale Xn with respect to FFFFn can be uniquely written as the sum of a martingale
Mn with respect to FFFFn and an increasing predictable process An with A0 � 0.

Let D0 � X0 and Dj � X j 
 E�X j|FFFF j
1 � � FFFF j for j � 1. Set Mn � D0 � D1 ���Dn � FFFFn, and
A0 � 0, An � Xn 
 Mn � E�Xn|FFFFn
1 � 
 �D0 ���Dn
1� � FFFFn
1 for n � 1.

Stopping Time Martingale Proposition: If T is a stopping time and �Xn�n�0 is a super-martingale, then �XT
n�n�0 is a

super-martingale.

Stopped Martingale Corollary: If T is a stopping time and �Xn�n�0 is a martingale, then �XT
n�n�0 is a martingale.

Let T be a stopping time with E�T� � �, then E�T� � �
i�1

�
P�T � i�.

Martingale Convergence

Let ��,FFFF, �FFFFn�n�0,P� be a filtered probability space and let �Xn�n�0 be any adapted process. Let a � b � R. Denote by

Un�a, b� the number of up crossings from a to b by time n, i.e., the largest k � 0 such that there are (random) times
0 � s1 � t1 ��� sk � tk � n and Xs i � a, X t i � b for each i.

Doob’s Upcrossing Inequality: If �Xn�n�0 is a sub-martingale, then E�Un�a, b�� � E��Xn
a�� �
E��X0
a�� �
b
a

.

We use the Upcrossing Inequality in the following theorem to show that the nonnegative sub-martingale has a finite

number of of crossings, and therefore converges.

Martingale Convergence: Suppose that �Xn�n�0 is a sub-martingale with supn E�Xn
� � � �. Then for some X, we have

Xn � X a.s., where E|X| � �.

This gives us the following 2 corollaries:

L1-Bounded Martingale Convergence: If �Xn�n�0 is a martingale with supn E|Xn | � �, then Xn � X a.s. and E|X| � �.

Non-negative Super-Martingale Convergence: If �Xn�n�0 is a super-martingale with Xn � 0, then Xn � X a.s. and

E�X� � E�X0 �.
Exercises D5.2.4-D5.2.14
Exercise D5.2.5: Let Xn � �m�n1Bmand suppose Bn � FFFFn. What is the Doob decomposition for Xn?
Exercise D5.2.13: The switching principle. Suppose Xn

1 and Xn
2 are super-martingales with respect to Fn, and N is a

stopping time so that XN
1 � XN

2 . Then show that: Yn � Xn
11�N	n� � Xn

21�N�n� is a super-martingale.

Examples

Theorem D5.3.1 (Bounded Increments): Let X1, X2,�be a martingale with |Xn�1 
 Xn | � M � �. Let
C :� lim Xn exists and is finite , and D :� lim sup Xn � �� and lim infXn � 
� . Then, P�C � D� � 1.

Exercises D5.3.1-D5.3.4

Theorem D5.3.2 (2nd Borel-Cantelli Lemma): Let FFFFn, n � 0 be a filtration with FFFF0 � ��,�� and An, n � 1 a
sequence of events with An � FFFFn. Then, An i.o. � �

n�1

�
P�An|FFFFn
1� � � .

Exercises D5.3.5-6

Polya’s Urn Scheme

Radon-Nikodym Derivatives

Let � be a finite measure and � a probability measure on ��,FFFF�. Let FFFFn 
 FFFF be �-fields (i.e., ���FFFFn� � FFFF). Let �n and

�n be the restrictions of � and � to FFFFn.

Theorem D5.3.3: Suppose �n �� �n for all n. Let Xn � d�n/d�n and let X � lim sup Xn. Then,

��A� � �
A

Xd� � ��A � �X � ���.
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Lemma D5.3.4: Xn � d�n/d�n (Define: ��,FFFF, ��) is a martingale with respect to FFFFn.

Branching Processes: Galton-Watson

Let �i
n, i � 1, n � 0 be iid nonnegative integer valued random variables with a common � :� E��i

n � � �0,��. Define

Z0 � 1 and Zn�1 �
�1

n ����Zn

n , if Zn 	 0,

0, if Zn � 0.

Then, Zn

�n
n�0

is a martingale with respect to FFFFn � ���i
m : i � 1, 0 � m � n�.

Theorem D5.3.7: If � � 1, then Zn � 0 for all n sufficiently large, so Zn/�n � 0.

Theorem D5.3.8: If � � 1 and P��i
m � 1� � 1, then Zn � 0 for all n sufficiently large.

Generating Function for the Offspring Distribution pk : 
�s� :� �
k�0

pks
k on s � �0, 1�, where pk � P��i

m � k�.

This generating function is used in the proof of the following theorem:

Theorem D5.3.9 (probability of extinction): P Zn � 0 for some n � P��n�0
� �Zn � 0�� � � the unique fixed point of


 in �0, 1�.

So, If � 	 1, then � � 1, that is, P Zn 	 0 for all n 	 0.

Theorem D5.3.10: W � lim Zn/�n is not � 0 if and only if �pkk logk � �.

Exercises D5.3.10-12. Exercise D5.3.12: Show that if P�limZn/�n � 0� � 1, then it is � � and hence

�limZn/�n 	 0� � Zn 	 0 for all n a.s.

Martingale Inequalities

Stopping Time Submartingale Inequality (Proposition 5.24): If �Xm�m�0 is a sub-martingale and T is a stopping time

with P�T � k� � 1, for some k � Z�, then E�X0 � � E�XT � � E�Xk �.

Corollary: If �Xm�m�0 is a martingale and T is a stopping time with P�T � k� � 1, for some k � Z�, then

E�X0 � � E�XT � � E�Xk �.
Exercise D5.4.1-3

Doob’s Maximal Inequality: Let �Xm�m�0 be a nonnegative sub-martingale, Xn
� :� max0�m�n Xm, � 	 0, and

A :� �Xn
� � ��. Then, P�A� � 1

� E�Xn1A � � 1
� E�Xn �.

Relatedly: If �Xn � is a sub-martingale, then �Xn
� � is a nonnegative sub-martingale, and if �Xn � is a martingale, then �|Xn |� is

a nonnegative sub-martingale.

Observe that E�Xn|FFFFn
1 � � Xn
1 	 E�Xn1A � � E�Xn
11A � for all A � FFFFn
1.

Exercise D5.4.4. Exercise D5.4.5: Let Xn be a martingale with X0 � 0 and E�Xn
2 � � �. Show that:

P
1�m�n

max Xm � � � E�Xn
2 �

E�Xn
2 ���2

. Hint: Use the fact that �Xn � c�2 is a submartingale and optimize over c.

Lp-Maximal Inequality: Let �Xn�n�0 be a nonnegative sub-martingale, Xn
� � max0�m�n Xm. Fix p 	 1. Then,

E��Xn
��p � � p

p
1

p
E�Xn

p �.

Theorem D5.4.4: Let Xn be a sub-martingale and log�x :� max�logx, 0�, then

E�Xn
� � � �1 
 1

e �

1�1 � E�Xn

� log��Xn
����.

Exercise D5.4.6: Prove Theorem D5.4.4 by carrying out the following steps: i) Imitate the proof of D5.4.2 but use the

trivial bound P�A� � 1 for � � 1 to show that E�Xn
� 
 M� � 1 � �Xn

� log�Xn
� 
 M�dP.

Lp-Convergence Theorem for Martingales (See L1 Bdd Cnvg Thm): Suppose that �Xn�n�0 is a martingale with

supE�|Xn |p � � � for some p 	 1. Then, Xn � X a.s. and in Lp.

Theorem D5.4.6 - Orthogonality of Martingale Increments: Let Xn be a martingale with E�Xn
2 � � � for all n. If m � n

and Y � FFFFm has E�Y2 � � � then E��Xn 
 Xm�Y� � 0.
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Theorem D5.4.7 - Conditional Variance Formula: If Xn is a martingale with E�Xn
2 � � � for all n, then

E �Xn 
 Xm�2|FFFFm � E�Xn
2|FFFFm � 
 Xm

2 .

Exercises D5.4.7-5.4.9

Uniform Integrability and L1-Convergence of Martingales

Uniform Integrability: A family of random variables �X����� is said to be uniformly integrable (UI) if

sup���E�|X� |1�|X� |	M� � � 0 as M � �.

Remark: Since E|X� | � M � E�|X� |1�|X� |	M� �, we have that �X����� is UI 
 �X����� is L1-bounded, i.e.,

sup���E|X� | � �.

Sub �-field UI Lemma: Let X � L1��,FFFF,P�. Then, E�X|GGGG� : GGGG a �-field � FFFF is uniformly integrable.

Exercise D5.5.1: Let 
 � 0 be any function with 1
x 
�x� � � as x � �, for example, 
�x� � xp with p 	 1 or 
�x� � x log�x.

If E�
�|X i |�� � C for all i � I, then �X i : i � I� is uniformly integrable.

Convergence in Probability Equivalency Theorem: If Xn � X in probability, then TFAE :

� �Xn : n � 0� is uniformly integrable. � Xn � X in L1 
 E�|Xn 
 X|� � 0.

� E|Xn | � E|X| � �.

Convergence in Probability Corollary: As a consequence of the previous theorem, Xn

p
� X and �Xn�n�0 is UI iff

Xn

L1

� X. In particular, if Xn

p
� X and |Xn | � Y for some Y � L1, then Xn

L1

� X.

Sub-martingale Equivalencies Theorem: for a sub-martingale �Xn�n�0, TFAE:

� �Xn�n�0 is UI, � Xn converges a.s. and in L1, � Xn converges in L1.

If �Xn�n�0 is a martingale, then these are also equivalent to:

� there exists an integrable random variable X so that Xn � E�X|FFFFn �.

Lemma D5.5.4: If integrable random variables Xn � X in L1, then E�Xn|1A � � E�X1A �.
Exercise D5.5.2-4.

Theorem D5.5.8 - Levy’s 0-1 Law: Suppose that FFFFn 
 FFFF� :� ���n FFFFn� and A � FFFF�, then E�1A|FFFFn � � 1A a.s..

Levy’s Forward Law: Suppose that FFFFn 
 FFFF� :� ���n FFFFn�. If X � L1, then E�X|FFFFn � � E�X|FFFF� � a.s. and in L1.

Kolmogorov’s 0-1 Law: Let �1,�2,� be independent random variables and let FFFFn � ���1,�2,� ,�n� for each n. Let

TTTT � �k�1
� ���k,�k�1,� � be the tail �-field. Then for any A � TTTT, P�A� � �0, 1�.

Exercises D5.5.5-7

Theorem D5.5.9 (Dominated Convergence for Converging �-Algebra): Suppose Yn � Y a.s. and |Yn | � Z for all n

where E�Z� � �. If FFFFn 
 FFFF� then E�Yn|FFFFn � � E�Y|FFFF� � a.s.

Exercise D5.5.8: Show that if FFFFn 
 FFFF� and Yn � Y in L1, then E�Yn |FFFFn � � E�Y|FFFF� � in L1.

Backward Martingale

Let �FFFF
n�n�0 be a sequence of sub-�-fields, with the property �� FFFF
2 � FFFF
1 � FFFF0. A sequence of random variables

�X
n�n�0 is said to be a backward (or reverse) martingale if:

� X
n � FFFF
n for each n � Z�. � X
n � L1 for each n � Z�.

� E�X
n|FFFF
�n�1� � � X
�n�1� for each n � Z�.

Clearly, E�X0|FFFF
n � � X
n for each n � Z�. Hence, if �X
n�n�Z�
is a reverse martingale, then it is UI.

Convergence of Reverse Martingale Theorem: Let �X
n�n�0 be a reverse martingale. Then X
n

n��
� X
� a.s. and in L1.

Moreover, E�X0|FFFF
� � � X
� where FFFF
� � �n�Z� FFFF
n.

Exercise D5.6.1: Show that if X0 � Lp, the convergence X
n
n��
� X
� occurs in Lp.
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Levy’s Backward Law: Let Y � L1. Suppose that there is a decreasing sequence of �-fields GGGG0 � GGGG1 � GGGG2 �� and

GGGG� � �n�0
� GGGGn. Then, E�Y|GGGGn � � E�Y|GGGG� � a.s. and in L1.

Exercise D5.6.2: Prove the backwards analog of theorem D5.5.9. Suppose Yn � Y
� a.s. as n � 
� and |Yn | � Z a.s.
where E�Z� � �. If FFFF � FFFF
�, then E�Yn |FFFFn � � E�Y
� |FFFF
� � a.s.

Exchangeable Sequence: We say a sequence of random variables X1, X2,� is exchangeable if for each n � 1, we have

�X1, X2,� , Xn�
d
� �X��1�, X��2�,� , X��n��, for all permutations � of �1, 2,� , n�, i.e., their joint law is invariant under any

finite permutation of coordinates.

� Exchangeable Sequence 
 Identical Distribution (but not the reverse).

� IID 
 Exchangeable Sequence (but not the reverse).

de Finetti’s Theorem: If X1, X2,� are exchangeable, then conditional on �, X1, X2,� are iid.

Lemma D5.6.4 - Consistency of U-Statistics (used in proof of HW Law): Suppose X1, X2,� are i.i.d. and f : Rk � R

is bounded, then An�
� :� 1
�n�k

�if�X i1 , X i2 ,� , X ik �
a.s.�L1

� E�f�X1, X2,� , Xk�� a.s.

For example, if X1, X2,� is a iid sequence with finite mean, then 1
n�n
1�

�
i�j�n

|X i 
 X j |
a.s.�L1

� E|X1 
 X2 |.

Theorem D5.6.6: If X1, X2,� are exchangeable and take values in �0, 1�, then there is a probability distribution F��� on

�0, 1� so that P�X1 � 1,� , Xk � 1, Xk�1 � 0,� , Xn � 0� � �
0

1
�k�1 
 ��n
kdF���.

Exercises D5.6.3-5

Optional Stopping Theorem

Let ��,FFFF, �FFFFn�n�0,P� be a filtered probability space and let T be a stopping time. We denote by FFFFT, the �-field of

"events which have occurred prior to time T. " In symbols: FFFFT :� A � FFFF : A � �T � n� � FFFFn, 	n � 0 . In the above

definition of FFFFT, the event �T � n� can be replaced by �T � n�.

Optional Stopping Proposition:

i) If T is a stopping time, then FFFFT is a �-field and T is FFFFT-measurable.

ii) If S � T are stopping times, then FFFFS � FFFFT.

iii) Let T be a stopping time with P�T � �� � 1 and �Xn�n�0 be an adapted sequence. Then XT � FFFFT.

UI Sub-martingale Stopping Time Closure: If �Xn�n�0 is a UI sub-martingale, then for any stopping time T, �XT
n�n�0

is UI.

Theorem D5.7.2: If E�XT � � � and Xn1�T	n�is UI, then XT
n is UI.

Theorem D5.7.3 (see prop. 5.24): If Xn is a uniformly integrable sub-martingale, then for any stopping time T � �, we
have: E�X0 � � E�XT � � E�X� �, where X� � lim Xn.

Optional Stopping Theorem for Submartingales: If S and T are stopping times with P�S � T � �� � 1 and �XT
n�n�0

is a uniformly integrable sub-martingale, then E�XT|FFFFS � � XS a.s. Consequently, E�XS � � E�XT �.

Optional Stopping Theorem for Martingales: If S and T are stopping times with P�S � T � �� � 1 and �XT
n�n�0 is a

uniformly integrable martingale, then E�XT|FFFFS � � XS a.s. Consequently, E�XS � � E�XT �.

Theorem D5.7.5 (a generalization of Wald): Suppose Xn is a sub-martingale and E�|Xn�1 
 Xn | : FFFFn � � B a.s. If T is a
stopping time w/E�T� � �, then XT
n is uniformly integrable and hence E�XT � � E�X0 �.

Nonnegative Supermartingale Stopping Time Theorem D5.7.6: If Xn is a nonnegative super-martingale and T � � is
a stopping time, then E�X0 � � E�XT � where X� � lim Xn, which exists by Theorem D5.2.9.
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Theorem D5.7.7 (Asymmetric Simple Random Walk): Let �1,�2,� be iid random variables and Xn :� �1 ����n.
Let P��i � 1� � p and P��i � 
1� � q � 1 
 p with p � q. Without loss of generality, we assume 1

2
� p � 1.

a) If 
�x� � 1
p
p

x
then 
�Sn� is a martingale.

b) If we let Tx � inf�n : Sn � x� then for a � 0 � b, we have: P�Ta � Tb� � 
�b�

�0�

�b�

�a� .

c) If a � 0, then P�minn Sn � a� � P�Ta � �� � 1
p
p


a
.

d) If b 	 0, then P�Tb � �� � 1 and E�Tb � � b
2p
1

.

Exercise D5.7.2: Let Sn be an asymmetric simple random walk with 1
2

� p � 1,

and let �2 � pq. Use the fact that Xn � �Sn 
 �p 
 q�n�2 
 4�2n is a martingale to show Var�Tb � � b�2

�p
q�3
.

Exercises D5.7.3-9

Random Durrett Exercises

D5.1.3: Prove Chebyshev’s Inequality for conditional expectations.

D5.1.4: Suppose X � 0 and E�X� � �. (There is nothing to prove when E�X� � �.) Show there is a unique

FFFF-measurable Y with 0 � Y � � such that �
A

XdP � �
A

YdP for all A � FFFF. HINT: Let XM � X 
 M, YM � E�XM|FFFF�,

and let M � �.

D5.1.5: Imitate the proof in the remark after Thereom 1.5.2 to prove the conditional Cauchy Schwartz inequality:
E�XY|GGGG�2 � E�X2|GGGG�E�Y2|GGGG�.

D5.1.6: Give an example on � � �a, b, c� in which: E�E�X|FFFF1 �|FFFF2 � � E�E�X|FFFF2 �|FFFF1 �.

D5.1.7: Show that when E|X|, E|Y|, and E|XY| are finite, each statement implies the next one and give examples with
X, Y � �
1, 0, 1� a.s. that show the reverse implications are false: i) X and Y are independent, ii) E�Y|X� � E�Y�, ii)
labelE�XY� � E�X�E�Y�.

D5.1.8: Show that if GGGG � FFFF and E�X2 � � �, then
E �X 
 E�X|FFFF��2 � E �E�X|FFFF� 
 E�X|GGGG��2 � E �X 
 E�X|GGGG��2 . �If we drop the 2nd term on the left, we get an

inequality that says geometrically, the larger the subspace the closer the projection is, or statistically, more information
means a smaller mean square error.]

D5.1.9: Let Var�X|FFFF� � E�X2|FFFF� 
 E�X|FFFF�2. Show that Var�X� � E�Var�X|FFFF�� � Var�E�X|FFFF��.

D5.1.10: Let Y1, Y2 be iid with mean � and variance �2, N an independent positive integer valued random variable with
E�N2 � � � and X � Y1 ���YN. Show that Var�X� � �2E�N� � �2Var�N�. To understand and help remember the
formula, think about the 2 special cases in which N or Y is constant.

D5.1.11: Show that if X and Y are random variables with E�Y|GGGG� � X and E�Y2 � � E�X2 � � �, then X � Y a.s.

D5.2.4: Give an example of a martingale Xn with Xn � 
� a.s. Hint: Let Xn � �1 ����n, where the �i are independent
(but not identically distributed) with E��i � � 0.
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D5.3.5: Let pm � �0, 1�. Use the Borel-Cantelli lemmas to show that �
m�1

� �1 
 pm� � 0 if and only if �
m�1

�
pm � �.

D5.3.6: Show �
n�2

�
P�An|�m�1

n
1 Am
c � � � implies P��m�1

n
1 Am
c � � 0.

D5.3.10: Galton and Watson who invented the process that bears their names were interested in the survival of family
names. Suppose each family has exactly 3 children but coin flips determine their sex. In the eighteen hundreds, only male
children kept the family name so following the male offspring leads to a branching process with
p0 � 1

8
, p1 � 3

8
, p2 � 3

8
, p3 � 1

8
. Compute the probability � that the family name will die out when Z0 � 1.

D5.4.1: Show that if j � k, then E�X j|1�T�j� � � E�Xk|1�T�j� � and sum over j to get a 2nd proof of E�XT � � E�Xk �.

D5.4.2: Generalized the proof of Theorem 5.4.1 to show that if Xn is a sub-martingale and M � T are stopping times with
P�T � k� � 1, then E�XM � � E�XT �.

D5.4.3: Use the stopping times from the Exercise 4.1.7 to strengthen the conclusion of the previous exercise to
E�XT|FFFFM � � XM.
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Durrett Chapter 6 (Markov Chains)

Markov chain: Given a filtration �FFFFn�n�0, an �FFFFn�n�0-adapted stochastic process �Xn�n�0 taking values in �S,SSSS� is called

a Markov chain if it has the Markov Property:

P�Xn�1 � B|FFFFn� � P�Xn�1 � B|Xn� a.s. for each B � SSSS, n � 0.

Markov Chain Transition Probability: A set function p : S � SSSS � �0, 1� is said to be a transition probability if:

i) For each x � S, B � p�x, B� is a probability measure on �S,SSSS�.

ii) For each B � SSSS, x � p�x, B� is a SSSS-measurable function.

We say a Markov chain �Xn�n�0 has transition probabilities �pn�n�0 if P�Xn�1 � B|FFFFn� � pn�Xn, B� almost surely for each

n � 0 and B � SSSS.

Transition Matrix: The probability of moving from i to j in one time step is P�j|i� �: pij, if we put these into a matrix,
we have the transition matrix p � �pij �.

Time Homogeneous Markov Chain: A Markov chain in which the transition probabilities are all the same pn � p for
all time n � 0.

Exercise 6.4: Let p be a transition probability on S � SSSS and � be a probability measure on �T,TTTT�. Then there exists a

unique probability measure � on T � S, TTTT � SSSS such that ��A � B� � �
A
��dx0 �p�x0, B� for all A � TTTT, B � SSSS.

Theorem 6.5 (Existence of Markov Chain): Let �pn�n�0 be a sequence of transition probabilities and � be a probability

measure on �S,SSSS�. Then there exists a unique probability measure P� on �SZ� ,SSSSZ� � such that if X � SZ� , the coordinate

maps Xn�x� � xn : SZ� � S form a Markov chain with respect to its canonical �-field �FFFFn�n�0 and such that for each

B � SSSS:

i) P��X0 � B� � ��B�, ii) P��Xn�1 � B|FFFFn� � pn�Xn, B� P�- a.s.

Proposition 6.6: If �Xn�n�0 is a Markov chain with transition probabilities �pn�n�0 and initial distribution �, then the

finite dimensional distributions are given by EQ 37 in the class notes , i.e.,

P�X0 � A0, X1 � A1,� , Xk � Ak� � �
A0

��dx0� �
A1

p0�x0, dx1�� �
Ak

pk�xk
1, dxk�.

Useful in proving this proposition is the following lemma:

Lemma 6.7: Under the Markov set up, for each n � 0 and for any bounded measurable function f : S � R, we have:

E�f�Xn�1�|FFFFn � � �pn�Xn, dy�f�y� a.s.

Theorem D6.1.3 (Monotone Class Theorem): Let AAAA be a �-system that contains � and let HHHH be a collection of real
valued functions that satisfies:

i) If A � AAAA, then 1A � HHHH.

ii) If f, g � HHHH, then f � g, and cf � HHHH for any real number c.

iii) If fn � HHHH are nonnegative and increase to a bounded function f, then f � HHHH.

Then HHHH contains all bounded functions measurable with respect to ��AAAA�.

Proposition 6.8: Let �Xn�n�0 be a Markov chain on a countable set S with transition matrix p and initial distribution �.

Then:

a) P X0 � i0, X1 � i1,� , Xn � in � ��i0�p0�i0, i1��pn
1�in
1, in�

b) P�Xn � j|X0 � i� � �pn��i, j�.

c) P�Xn � j� � �
i�S

��i��pn��i, j�.
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Section D6.2 Examples

Examples and Exercises D6.2.2-9

Exercise D6.2.4: Let �0,�1� be iid � �H, T�, taking each value with probability 1
2

. Show that Xn � ��n,�n�1� is a

Markov chain and compute its transition probability p. What is p2?

Exercise D6.2.8: Let �0,�1� be iid� �
1, 1�, taking each value with probability 1
2

. Let S0 � 0, Sn � �1 ����n, and

Xn � max�Sm : 0 � m � n�. Show that Xn is not a Markov chain.

D6.3 - Strong Markov Property

Let �Xn�n�0 be an S-valued (time homogeneous) Markov chain with initial distribution �. By theorem 6.5, assume that

Xn’s are the coordinate maps on the space �SZ� ,SSSSZ� ,P��. Let FFFFn be the �-field generated by X0,� , Xn. Define the shift

operator � : SZ� � SZ� by ��x0, x1,� � � �x1, x2,� �. So: ��k�x��
n
� xk�n for n, k � 0.

Theorem 6.14 (Strengthened Markov Property): Let �Xn�n�0 be as above. For any bounded measurable function

f : SZ� � R, and any k � 0, E��f � �k|FFFFk � � EXk�f� P�- a.s.

Above, E� is the expectation operator associated with probability measure P�, where � � �x0 .

Exercise 6.15: From the above theorem, deduce that:
P��Xk�1, Xk�2,� � � B, �X0, X1,� , Xk
1 � � A|Xk � � P��Xk�1, Xk�2,� � � B|Xk �P��X0, X1,�Xk
1 � � A|Xk �.
Exercise D6.3.1: Use the Markov property to show that if A � ��X0,� , Xn � and B � ��Xn, Xn�1,� �, then for any initial

distribution �, we have: P��A � B|Xn � � P��A|Xn �P��B|Xn �.
In words, the past and future are conditionally independent given the present. Hint: Write the left-hand side as
E��E��1A1B |Fn �|Xn �.

Theorem D6.3.2 (Chapman-Kolmogorom Equation): Px�Xm�n � z� � �yPx�Xm � y�Py�Xn � z�. (short proof).

Theorem D6.3.3: Let Xn be a Markov chain and suppose P��m�n�1
� �Xm � Bm�|Xn� � � 	 0 on �Xn � An�, then

P Xn � An i.o. 
 Xn � Bn i.o. � 0.

Intuitive meaning of this theorem: "If the chance of a pedestrians getting run over is greater than � 	 0 each time he
crosses a certain street, then he will not be crossing it indefinitely (since he will be killed first)!"

Exercise D6.3.2

Absorbing: A state a is called absorbing if Pa�X1 � a� � 1.

Theorem 6.16 (Strong Markov Property): Let �Xn�n�0 be as above. For any bounded measurable function f : SZ� � R

and for any stopping time T, E��f � �T|FFFFT � � EXT�f� on �T � �� P�- a.s.

Theorem D6.3.5 (Reflection Principle): Let �1,�2,� be independent and identically distributed with a distribution that

is symmetric about 0. Let Sn � �1 ����n. If a 	 0, then P�supm�n Sm 	 a� � 2P�Sn 	 a�.
Exercises D6.3.3-12
Exercise D6.3.7: Let Xn be a Markov chain with S � �0, 1,� , N� and suppose that Xn is a martingale and
Px�	0 
 	N � �� 	 0 for all x. i) Show that 0 and N are absorbing states, that is, p�0, 0� � p�N, N� � 1.
Exercise D6.3.10: Let 	A � inf�n � 0 : Xn � A� and g�x� � Ex�	A �. Suppose that S 
 A is finite and for each x � S 
 A,
Px�	A � �� 	 0. i) Show that g�x� � 1 ��

y
p�x, y�g�y� for all x � A ���

Recurrence and Transience

Let X0 be any state. Let Ty
0 :� 0, and for k � 1, let Ty

k :� inf�n 	 Ty
k
1 : Xn � y�, the time of the kth visit since possibly

X0 to y. Let �yz :� Py�Tz � �� (probability you’ll get to z from y in finite time.

Theorem 6.17: For k � 1, Py�Tz
k � �� � �yz�zz

k
1.

Exercise 6.18 (iid cycle): Suppose y � S such that �yy � 1. Let Rk � Ty
k be the time of the kth return to y, and for k � 1,

let rk � Rk 
 Rk
1 be the kth inter-arrival time. Use the strong Markov property to conclude that under Py, the vectors
vk � �rk, XRk
1 ,� , XRk
1 �, k � 1 are i.i.d.

Recurrent: A state y � S is called recurrent if �yy � 1 and is called transient if �yy � 1.
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By Theorem 6.17: If y is recurrent, then Py Xn � y i.o. �
k��
lim Py�Ty

k � �� � limk �yy
k � 1.

If y is transient, then Py Xn � y i.o. � limk �yy
k � 0.

Total Visits (N�y�): Let the total number of visits to y by the Markov chain Xn be notated as N�y� :� �
n�1

�
1�Xn�y�.

Lemma 6.20: For any x, y � S, we have:

i) Px�N�y� � k� � �xy�yy
k
1�1 
 �yy�,

ii) Ex�N�y�� �
�xy

1
�yy
� �

n�1

�
pn�x, y� (where we interpret 0

0
� 0, c

0
� �� for c 	 0).

Recurrent Corollary: A state x � S is recurrent if and only if Ex�N�x�� � �
n�1

�
pn�x, x� � �.

Exercises D6.4.2-3

Communication

A state x leads to, or is accessible from another state y � x, denoted by x � y, if �xy 	 0 (or equivalently, for some
n � 1, pn�x, y� 	 0). Formally, state y is accessible from state x if there exists an integer nxy � 0 such that

P�Xnxy � y|X0 � x� � pxy
�nxy � 	 0. This integer is allowed to be different for each pair of states, hence the subscripts in nij.

Allowing n to be zero means that every state is accessible from itself by definition, or x � x. The accessibility relation is
reflexive and transitive, but not necessarily symmetric.

A pair of states x and y are said to communicate, denoted by x � y, if x � y and y � x.

Communicating Class: "�" is an equivalence relation. Therefore, there is a partition C1, C2 of S, with each block Ci

being referred to as a communicating class.

Irreducible Subset: A subset A � S is called irreducible if x � y for all x, y � A. By definition, each class is
irreducible.

A Markov chain is said to be irreducible if it is possible to get to any state from any state. More formally, a Markov
chain is said to be irreducible if its state space is a single communicating class, i.e., x � y for all x, y � s.

Proposition 6.23: If x is recurrent and �xy 	 0, then:

i) �yx � 1, ii) y is recurrent, iii) �xy � 1.

Exercise D6.4.4: Use the strong Markup property to show that �xz � �xy�yz.

Closed Subset of States: We call a subset of states A � S closed if �xy � 0 for all x � A and y � A.

Lemma 6.24: A recurrent class C is closed.

Lemma 6.25: If C is a finite closed set, then it contains at least one recurrent state. In particular, a finite closed class C is
recurrent.

Lemma 6.26: In a finite state Markov chain, a class is recurrent (respectively transient) if and only if it is closed
(respectively not closed).

Exercise D6.4.5

Theorem D6.4.5 (Decomposition Theorem, motivated by Example D6.4.1): Let R � �x : �xx � 1� be the recurrent
states of a Markov chain. R can be written as �i R i, where each R i is closed and irreducible. [This results shows that for
the study of recurrent states we can, without loss of generality, consider a single irreducible closed set.]

Birth and Death Chains on N

Let N :� inf�n : Xn � 0�. Let p�i, i � 1� �: pi, p�i, i 
 1� �: qi, p�i, i� �: ri, where q0 � 0. Define the function


 so that 
�XN
n� is a martingale. Set 
�0� � 0 and 
�1� � 1, and note that for the martingale property to hold when
Xn � k � 1, we have: 
�k� � pk
�k � 1� � rk
�k� � qk
�k 
 1�. And using rk � 1 
 �pk � qk�, we rewrite this as

�k � 1� 
 
�k� � qk

pk
�
�k� 
 
�k 
 1��. Suppose that pk, qk 	 0 for k � 1 so that the chain is irreducible. We find that


�m � 1� 
 
�m� � �
j�1

m q j

p j
for m � 1 and 
�n� � �

m�0

n
1 �
j�1

m q j

p j
for n � 1.
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Theorem D6.4.6: Let Tc � inf�n � 1 : Xn � c�. If a � x � b, then Px�Ta � Tb� � 
�b�

�x�

�b�

�a� , and

Px�Tb � Ta� � 
�x�

�a�

�b�

�a� .

Theorem D6.4.7: 0 is recurrent if and only if 
�M� � � as M � �, that is: 
��� � �
m�0

� �
j�1

m q j

p j
� �. If 
��� � �,

then Px�T0 � �� � 
�x�

���

.

Exercise D6.4.6

Theorem D6.4.8: Suppose S is irreducible, and 
 � 0 with Ex 
�X1� � 
�x� for x � F, a finite set, and 
�x� � � as

x � �, that is, �x : 
�x� � M� is finite for any M � �, then the chain Xn is recurrent.

Exercises D6.4.7-10

Stationary Measures

Stationary/Invariant Measure �:

(invariant) �p � � : ��y� � �x�S��x�p�x, y�. (i.e., � is a left eigenvector of p).

The last equation says P��X1 � y� � ��y�. Using the Markov property and induction, it follows that P��Xn � y� � ��y�
for all n � 1. If � is a probability measure, we call � a stationary distribution, and it represents a possible equilibrium for
the chain.

Stationary/Invariant Distribution �:

i) (probability distribution) �x�S��x� � 1

ii) (invariant) �p � � : ��y� � �x�S��x�p�x, y�. (i.e., � is a left eigenvector of p).

Exercises D6.5.1-2

Reversible Measure: A measure � that satisfies ��x�p�x, y� � ��y�p�y, x� for all x, y.

Theorem D6.5.1: Suppose p is irreducible. A necessary and sufficient condition for the existence of a reversible
measure is that i) p�x, y� 	 0 implies p�y, x� 	 0, and ii) for any loop x0,� , xn � x0 with

�
1�i�n

p�x i, x i
1� 	 0, �
i�1

n p�xi
1,xi �
p�xi,xi
1 �

� 1.

Unique Stationary/Invariant Distribution �: Suppose that S is finite and p is irreducible. Then there exists a unique
solution to �p � � with �i�S��i� � 1 and ��i� 	 0 for all i � S.

Stationary/Invariant Measure Theorem (D6.5.2): Let x be a recurrent state. Then:

�x�y� :� Ex �
n�0

Tx
1
1�Xn�y� � �

n�0

�
Px�Xn � y, Tx 	 n�, is a stationary measure.

Exercise D6.5.3

Recurrent Time in y: Define �x�y� as the expected time spent in y between visits to x.

Exercise 6.42 (Irreducible Transient Chain with no Stationary Measure). Consider a Markov chain on Z� with

transition matrix p given by p�0, 1� � 1, p�i, i � 1� � 1 
 1
2

i
for all i � 1, and p�1, 0� � 1

2
, p�i, i 
 1� � 1

4

i
,

p�i, 0� � 1
2

i 
 1
4

i
for all i � 2. Show that this Markov chain is irreducible, transient and does not have any nontrivial

stationary measure.

Lemma 6.43: Suppose that a Markov chain is irreducible and recurrent. Let � be a stationary measure with ��y� 	 0 for

all y � S. If � is another stationary measure, then � � c� for some c 	 0.

Exercises D6.5.4-7
Exercise D6.5.5: Show that if p is irreducible and recurrent, then �x�y��y�z� � �x�z�

Positive recurrent: Ex�Tx � � �
n�1

�
nP�Tx � n� � �

y�S
�x�y� � � 
 Px�Tx � �� � 1.

Null-Recurrent: A state x � S is said to be null recurrent if Px�Tx � �� � 1, but Ex�Tx � � �.

If �Xn� is recurrent but not null recurrent then it is called positive recurrent.

A state j is called positive recurrent if the expected amount of time to return to a state j given that the chain started in
state j has finite first moment: E�	jj � � �. A positive recurrent state j is always recurrent: If E�	jj � � �, then
f j � P�	jj � �� � 1, but the converse is not true: a recurrent state need not be positive recurrent. A current state j for
which E�	jj � � � is called null recurrent.
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To test whether the state is postive-recurent or null-recurrent, we compute the mean return time:

Ex�Tx � � �
n�1

�
npn�x, x� � �, is null-recurrent.

If a chain is finite and irreducible, then there exists a unique stationary/invariant distribution �, and it is positive

recurrent.

If �Xn� is positive recurrent, then for every x, y � S,
n��
lim pn�x, y� � ��y� 	 0 where � : S � �0, 1� is the

stationary/invariant distribution.

Unique Corollary: An irreducible, positive recurrent Markov chain has a unique stationary/invariant distribution �.

Stationary/Invariant Corollaries: For an irreducible and recurrent chain, the following are true.

a) The stationary/invariant measures are unique up to constant multiples.

b) If � is a stationary/invariant measure, then ��x� 	 0 for all x.

c) The stationary/invariant distribution �, if it exists, is unique.

d) If a stationary/invariant measure has infinite mass, then the stationary/invariant distribution � cannot exist.

Recurrence from Stationary/Invariant Distributions: If � is a stationary/invariant distribution of a Markov chain
and ��x� 	 0, then x is recurrent.

Calculating Stationary/Invariant Distribution: If p is irreducible and has a stationary distribution �. Then
��x� � 1

Ex�Tx �
.

Exercise D6.5.8: Compute the expected number of moves it takes a night to return to its initial position if it starts in a
corner of the chessboard, assuming there are no other pieces on the board, and each time it chooses a move at random
from its legal moves. (Note: A chessboard is �0, 1,� , 7�2. A Knight’s move is L-shaped; 2 steps in one direction, followed
by one step in a perpendicular direction.)

Lemma 6.51 (Thm D6.5.6): For an irreducible Markov chain, the following are equivalent.

i) There exists x � S that is positive recurrent.

ii) There exists a stationary distribution �.

iii) Every state is positive recurrent.

Exercise D6.5.9: Suppose p is irreducible and positive recurrent. Then Ex�Ty � � � for all x, y.

Exercises D6.5.10-13

Theorem D6.5.7: If p is irreducible and has a stationary distribution �, then any other stationary measure is a multiple of

�.

Doubly Stochastic: A probability transition matrix pij � P�Xn�1 � j|Xn � i� is called doubly stochastic if �ipij � 1 for
all j and �jpij � 1 for all i. The uniform distribution is a stationary distribution of p if and only if the probability
transition matrix is doubly stochastic.

Stationary Sequence: A sequence of random variables �Xn�n�0 is said to be stationary if �Xn, Xn�1,� �
d
� �X0, X1,� �,

for each n � 0, or equivalently, �Xn, Xn�1,� , Xn�m�
d
� �X0, X1,� , Xm�, for each n, m � 0. Exchangeable sequences are

stationary.

A reversible measure is always stationary since �x�S��x�p�x, y� � �x�S��y�p�y, x� � ��y��P�y, x� � ��y� � 1 � ��y�.

Lemma 6.60: Consider a Markov chain �Xn�n�0 started from a stationary distribution π and transition matrix p. Fix N � 1
and define Yn � XN
n for n � 0, 1, . . . , N. Then �Yn�0�n�N is a time-homogeneous Markov chain with initial distribution π

and transition matrix q given by q�x, y� � ��y�p�y,x�
��x�

.
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Convergence of Markov Chains

Number of Visits to y: Let Nn�y� :� �i�1
n 1�Xi�y� be the number of times the chain visits y during the time �1,� , n�.

Theorem 6.62 (Asymptotic Density of Returns): Let y � S be recurrent. Then
n��
lim

Nn�y�
n � 1

Ey�Ty �
1�Ty��� Px- a.s.

Aperiodic. For a state x, let Ix :� �n � 1 : pn�x, x� 	 0�. Let dx be the greatest common divisor of Ix (if Ix � �, then
dx � ��). We say x has period dx. If every state of a Markov chain has period 1, then we call the chain aperiodic.

Lemma 6.67: If x � y, then dx � dy, i.e., periodicity is a class property.

Lemma 6.68: If dx � 1, then there exists n0 � 1 such that pn�x, x� 	 0 for all n � n0.

Lemma 6.69: An irreducible aperiodic Markov chain has the following property: for each x, y � S, there exists
n0 � n0�x, y� � 1 such that pn�x, y� 	 0 for all n � n0.

An irreducible aperiodic chain �Xn� is null recurrent if it is recurrent and
n��
lim pn�x, y� � 0 for all x, y � S.

Theorem 6.70 (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov chain with
stationary distribution �. Then, pn�x, y� � ��y� as n � �, for all x, y � S.

Exercises D6.6.1-7
Exercise D6.6.1: Show that if S is finite and p is irreducible and aperiodic, then there is an m so that pm�x, y� 	 0 for all x, y.

Convergence Theorem

Total Variation Distance: For two probability measures �,� on S, their total variation distance is given by:

dTV��,�� :� 1/2�
x�S

|��x� 
 ��x�| � supA�S|��A� 
 ��A�|.

Exercise 6.73: Let �,� be two probability measures on a countable space S.Then,

dTV��,�� � inf P�X � Y� : �X, Y� has a joint distribution with X ~ �, Y ~ � .

Coupled Markov Chain: Let �, � be to probability measures on a countable space S, and �Xn, Yn�n�0 on the product

space S � S. The chain is considered coupled if:

i) Its marginal processes �Xn�n�0 and �Yn�n�0 are Markov chains on S with the same transition matrix p and the initial

distributions � and � respectively, and

ii) Xn � Yn for n � T, where T :� inf�n � 0 : Xn � Yn�.

The next few lemmas are used in the proof of Theorem 6.70:

Lemma 6.74 (Coupling Inequality): Let �Xn, Yn�n�0 be a coupled Markov chain as above with X0 ~ � and Y0 ~ �. Let

�n and �n be the marginal distribution of Xn and Yn respectively. Then, dTV��,�� � P�T 	 n�.

Lemma 6.75: Let �Xn, Yn�n�0 is a Markov chain on S � S with transition matrix q and the initial distribution

�X0, Y0� ~ � � �. Then �Xn�n�0 and �Yn�n�0 are Markov chains on S with the same transition matrix p and the initial

distributions � and � respectively.

Lemma 6.76: P����T � �� � 1.

Mixing Time of Markov Chains
Exercise 6.78: Prove that E�T� � k�n 
 k�. (Hint: Use optional stopping theorem on the martingale �D t

2 
 t�
t�0

).

Exercise 6.80: Show that for any C 	 0, P�S 	 d logd � Cd� � e
C for all d � 1. Hint:

P�S 	 d logd � Cd� � �
i�1

d
P ith coupon is not picked in the first d logd � Cd draws � d 1 
 1

d

d logd�Cd
.

Random Durrett Exercises

D6.3.2: Let D � Xn � a for some n � 1 and let h�x� � Px�D�. i) Use theorem D6.3.3 to conclude that h�Xn� � 0 a.s.

on Dc. Here, a.s. means P� a.s. for any initial distribution �. ii) Obtain the result in Exercise D5.5.5 as a special case.

D6.4.5: Show that in the Ehrenfest chain (Example D6.2.5), all states are recurrent.
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D6.4.6: A gambler is playing roulette and bedding $1 on black each time. The probability she wins $1 is 18
38

, and the

probability she loses is $1 is 20
38

. i) Calculate the probability that starting with $20 she reaches $40 before losing her

money. ii) Use the fact that Xn � 2n
38

is a martingale to calculate E�T40 
 T0 �.

D6.5.3: Use the construction in the proof of Theorem D6.5.2 to show that ��j� � �k�jfk�1 defines a stationary measure for
the renewal chain (Example D6.2.3).

D6.5.10: Suppose p is irreducible and has a stationary measure � with �x��x� � �. Then p is not positive recurrent.

Ergodic Theory

Measure Preserving Map: Let ��,FFFF,�� be a probability space. A measurable map T : � � � is called measure
preserving if for each E � FFFF, we have: ��T
1�A�� � ��A�. In other words, � � T
1 � �. In this case, � is called the

invariant measure with respect to T and ��,FFFF,�, T� is called a measure preserving system.

Invariant Event: Let ��,FFFF,�, T� be a measure preserving system. Call an event A � FFFF invariant if T
1�A� � A �- a.s.,
i.e., ��A�T
1�A�� � 0. Collection of invariant events: IIII :� �A � FFFF : A is invariant �.

Invariant Random Variable: A random variable X : ��,FFFF� � R is said to be invariant if X � T � X �- a.s.

Ergodic System: A measure preserving system ��,FFFF,�, T� is ergodic if ��A� � 0 or 1 for each A � IIII.

Birkhoff’s Ergodic Theorem: Let ��,FFFF,�, T� be a measure preserving system. Then for any X � L1��,FFFF,��, we have:
1
n �k�0

n
1
X � Tk

a.s.�L1

� E�X|IIII�, as n � �.

Moreover, when T is ergodic, then we have E�X|IIII� � E�X� a.s. since IIII is a trivial �-field. Consequently,
1
n �k�0

n
1
X � Tk

a.s.�L1

� E�X�, as n � �.

Brownian Motion

Standard Brownian Motion (BM): A collection of random variables �B t� t�0 defined on a common probability space

such that:

1. For any n � 1 and 0 � t0 � t1 ��� tn, the increments B t i 
 B t i
1 , 1 � i � n are independent.

2. For any s � t, B t 
 Bs ~ N�0, t 
 s�. Also, B0 � 0 a.s.

3. For a.s. every � � �, the path t � B t��� is continuous.

Properties of BM:

� If 0 � t0 � t1 ��� tn, then the joint distribution of �B t1 , B t2 ,� , B tn � follows n-dimensional multivariate Gaussian
with mean 0 and the covariance matrix given by E�B t iB t j � � min�t i, t j�.

� For each T 	 0 and � 	 0, the Brownian path t � B t��� is 1
2

 � -Holder continuous on �0, T�.

|B t0 
 B t1 | � C|t0 
 t1 |
1
2

�, a.s.

� Scale Invariance: Fix c 	 0. Define Wt � Bct

c
for t � �0,��. Then �Wt� t�0 is again standard BM.

� Negative BM: �
B t� t�0 is also standard BM.

� Time Shift: Fix s � 0 and define Wt � B t�s 
 Bs for t � 0. Then, �Wt� t�0 is a standard BM, independent of

FFFFs :� ��Bu : u � s�.
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� Time Inversion: Let Wt �
tB 1

t
if t 	 0,

0 if t � 0,
then �Wt� t�0 is a standard BM. Note that �Wt� t�0 are jointly

Gaussians with mean 0 and for 0 � s � t, we have covariance matrix given by :
E�WsWt � � st min� 1

s , 1
t
� � min�s, t� � s.

� Law of Large Numbers:
t��
lim Bt

t
� 0 a.s.

� Nowhere Differentiability: Brownian paths are nowhere differentiable, a.s.

Let FFFFs
0 :� ��Br : 0 � r � s� and FFFFs

� :� �t	s FFFF t
0.

FFFFs
� are right continuous: �t	s FFFF t

� � �t	s ��u	t FFFFu
0� � �u	s FFFFu

0 � FFFFs
�.

And therefore allow us an “infinitesimal peak into the future." In other words, A � FFFFs
� if it is in FFFFs��

0 , for all �.

Blumenthal’s 0-1 law: If A � FFFF0
�, then for all x � R

d, we have: Px�A� � �0, 1�.

Difference between Convergence in Probability and Convergence Almost Surely:

For simplicity, consider the case where X � 0 and Xn is the indicator function of an event En. "Xn converges almost
surely to 0" says that with probability 1, only finitely many of the events En occur. "Xn converges in probability to 0"
says that the probability of event En goes to 0 as n � �.

Consider a case where for each m, you partition the sample space into m events, each of probability 1/m, and take all
these events for all m to form your sequence En. Then Xn � 0 in probability because the probabilities of the individual
events go to 0, but each sample point is in infinitely many En (one for each m) so Xn does not go to 0 almost surely.

Markov Examples

� Dice Game: A game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov
chain. This is in contrast to card games such as blackjack, where the cards represent a ’memory’ of the past moves.
Consider probability for a certain event in the game. In the above-mentioned dice games, the only thing that matters
is the current state of the board. The next state of the board depends on the current state, and the next roll of the dice.
It doesn’t depend on how things got to their current state. In a game such as blackjack, a player can gain an
advantage by remembering which cards have already been shown, so the next state (or hand) of the game is not
independent of the past states.

� Multivalued Markov Chain �Xn, Xn�1�n�1: where X i � �T, H� iid. P�X i � T� � 1
2

.

� Random walk Markov chains: Consider a random walk on the number line where, at each step, the position (call it

x) may change by �1 (to the right) or -1 (to the left) with probabilities: Pmove left �
1
2
� 1

2
x

c�|x|
,

Pmove right � 1 
 Pmove left, w/c 	 0.

Example, if constant c equals 1, the probabilities of a move to the left at positions x � 
2,
1, 0, 1, 2 are
1
6

, 1
4

, 1
2

, 3
4

, 5
6

resp. The random walk has a centering effect that weakens as c increases. Since probabilities depend

only on the current position (value of x) and not on prior positions, this biased random walk satisfies definition of
Markov chain. If Xn � 1, then P�Xn�1 � 2|FFFFn� � P�Xn�1 � 2|Xn � 1�.

� Gambler’s Fortune: Suppose you start w/$10, and wager $1 on an unending fair coin toss indefinitely, or until you
lose all your money. If Xn is # of $s after n tosses, w/X0 � 10, then �Xn : n � N� is a Markov process. If I know
that you have $12 now, then it is expected that w/even odds, you’ll either have $11 or $13 after next toss. The fact
that the guess is not improved by the knowledge of earlier tosses showcases the Markov property, the memoryless
property of a stochastic process. If Xn � c � 1, then P�Xn�1 � c|FFFFn� � P�Xn�1 � c|Xn � c � 1� � 1

2
.
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Martingale Examples

� Galton Watson Process

� Doobs Martingale Transform (if �H � X�n � L1).

� An unbiased random walk (in any number of dimensions): Sn :� �
i�1

n
X i where X i � �
1, 1� iid and S0 � 0, is an

example of a martingale.

E�Sn�1|FFFFn � � E�Xn�1 � Sn|FFFFn � � Sn � E�Xn�1 � � Sn � �1�P�Xn�1 � 1� � �
1�P�Xn�1 � 
1�

� Sn � 1
2

 1

2
� Sn a.s.

� A gambler’s fortune is a martingale if all betting games which the gambler plays are fair. Suppose Sn is a gambler’s
fortune after n tosses of a fair coin, where the gambler wins $1 if the coin comes up heads and loses $1 if it comes
up tails. The gambler’s conditional expected fortune after the next trial, given the history, is equal to their present
fortune. This sequence is thus a martingale. E�Sn�1|FFFFn � � Same as above

� Gamblers Total Gain/Loss Variance: Let Yn :� Xn
2 
 n, where Xn is gambler’s fortune from preceding example.

The sequence �Yn : n � 1, 2, 3, . . .� is a martingale. Used to show that gambler’s total gain or loss varies roughly
between plus or minus the square root of the number of steps.

� Pólya’s Urn contains a number of different coloured marbles; at each iteration a marble is randomly selected from
the urn and replaced with several more of that same colour. For any given colour, the fraction of marbles in the urn
with that colour is a martingale. For example, if currently 95% of the marbles are red then, though the next iteration
is more likely to add red marbles than another color, this bias is exactly balanced out by the fact that adding more
red marbles alters the fraction much less significantly than adding the same number of non-red marbles would. Let
Sn � �

i�0

n
X i the # of marbles that are red, where X0 is the initial number of red marbles.

E
Sn�1

Tn�1
|FFFFn � 1

Tn�1
E�Xn�1 � Sn|FFFFn �

� 1
Tn�1

�Sn � E�Xn�1|FFFFn �� � 1
Tn�1

Sn � P you choose red �
Sn� Sn

Tn

Tn�1
�

Sn 1� 1
Tn

Tn�1
�

Sn
Tn�1

Tn

Tn�1
� Sn

Tn
a.s.
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