Oral Probability Questions

These are notes made in preparation for oral exams involving the following topics in probability: Random walks, Martingales, and Markov Chains. Textbook used: "Probability: Theory and Examples," Durrett.

Chapter 4

1. Define: Random Walk

```
Let X_1, X_2, ... be iid taking values in \mathbb{R}^d
and let S_n = X_1 + ... + X_n. S_n is a random walk.
```

- 2. Name a Random Walk Theorem
 - **RW Possibilities on R**: Four possibilities, one w/prob = 1.
 - \circ S_n=0 \forall n, (recurrent)
 - \circ S_n $\rightarrow \pm \infty$, (transient)
 - \circ -∞=liminfS_nlimsupS_n=∞ (recurrent)
 - RW Recurrence on Rd:
 - S_n recurrent in d=1 if $S_n/n \rightarrow 0$ in probability. (or SSRW)
 - \circ S_n recurrent in d=2 if S_n/ \sqrt{n} converges in distribution to a non-deg. norm. dist. (or SSRW)
 - S_n transient in d≥3 if is "truly three-dimensional"
 - **RW Equivalencies Theorem**: Let $\tau_0=0$ and $\tau_n=\inf\{m>\tau_{n-1}:S_m=0\}$ be time of nth return to 0. Then, $P(\tau_1<\infty)=1 \Leftrightarrow P(S_m=0 \text{ i.o.})=1 \Leftrightarrow \sum_{m=0}P(S_m=0)=\infty.$
 - **RW Convergence/Divergence Theorem**: Convergence (divergence) of $\Sigma_n P(|S_n| < \epsilon)$, $\forall \epsilon > 0$ is sufficient to determine transience (recurrence) of S_n .
- 3. Does (a version of 1) always have _____ property (related to 2)?
 - For iid X₁,X₂,..., is exchangeable sigma field ε trivial? Yes. By Hewitt Savage 0-1. P(A)∈{0,1} for each A∈ε
 - Types of sets for RW recurrent values (V)? Empty set, or a closed subgroup of Rd.
 - If V (recurrent values) is a closed subgroup, V=? V={Possible Values}
- 4. Question that leads to a Counterexample/Example.
 - Are SSRW always recurrent? They are on d<3.
 - Are RW on R^d always recurrent w/ d<3? No, only w/ SSRW or w/ correct convergence (see above)
 - Will Wald's theorem hold with a SSRW S_n=X₁ +···+ X_n, with X_n ∈ {±1} starting at S₀=0, with a stopping time T when S_T=s≠0? (Wald has X_i as iid w/E[t]<∞ and E[X_i]<∞)
 Note that for any SSRW, that the time T to any position S_T=s is finite, with probability one.

However, the expected time is infinite. Therefore, it does not satisfy one of Wald's Theorem's assumptions.

Proof by Contradiction: Having conditioned on $C=\{S_T=X_1+\cdots+X_T=s\}$, then the conditioned expectation $E(X_1+\cdots+X_T\mid C)=s$ is evident; furthermore, since $X_n=\pm 1$ for all n with equal probability, we easily see that $\mu=E(X_n)=0$. Under these observations, assuming Wald's Identity $(E[S_T]=\mu \bullet T)$, we obtain an immediate contradiction ($s \ne 0 \bullet T$).

• If S,T are stopping times, then is it necessary that (S – T) is a stopping time? S–T is not necessarily a stopping time. For a counterexample, consider the simple random walk (X_n) on {...,-1,0,1,...} starting at X₀=0, and let S:=inf{n:X_n=1} and T:=1. Note that {S-T=1}={S=2} which is not X₁-measurable.

Examples of stopping times

- To illustrate some examples of random times that are stopping rules and some that are not, consider a gambler playing roulette with a typical house edge, starting with \$100 and betting \$1 on red in each game:
- Playing exactly five games corresponds to the stopping time $\tau = 5$, and is a stopping rule.
- Playing until he either runs out of money or has played 500 games is a stopping rule.
- Playing until he is the maximum amount ahead he will ever be is not a stopping rule and does not provide a stopping time, as it requires information about the future as well as the present and past.
- Playing until he doubles his money (borrowing if necessary) is not a stopping rule, as there is a positive probability that he will never double his money.
- Playing until he either doubles his money or runs out of money is a stopping rule, even though there is potentially no limit to the number of games he plays, since the probability that he stops in a finite time is 1.
- 1. Define: Stopping Time

```
(\Omega, \mathcal{F}_{n}(\mathcal{F}_{n})_{n\geq 0}, \mathbb{P}) a filtered prob space.
Stopping time T: \Omega \to \mathbb{Z}_{+} \cup \{+\infty\} is r.v. s.t. \{T \leq n\} \in \mathcal{F}_{n} \forall n \geq 0, or equivalently, \{T = n\} \in \mathcal{F}_{n} for all n \geq 0.
```

- 2. Name a Stopping Time Theorem
 - Wald's Identity: Let $X_1, X_2,...$ be iid $w/\mu := E[X_n] < \infty$. Set X_0 and let $S_n = X_1 + ... + X_n$, and T be stopping time $w/E[T] < \infty$. Then, $E[S_T] = \mu E[T]$.
 - If S,T,T_n are stopping times on (Ω,F,F_n,P) . Then so are:
 - \circ S+T, S \wedge T:=min(S,T), S \vee T:=max(S,T)
 - $\circ \quad \text{liminf}_{n} T_{n} \text{ and } \text{inf}_{n} T_{n}, \qquad \text{limsup}_{n} T_{n} \text{ and } \text{sup}_{n} T_{n}$
- 3. Does (a version of 1) always have _____ property (related to 2)?
 - Are constants stopping times? Yes.
- 4. Question that leads to a Counterexample/Example.

If stopping time T and F_T , and X_1, X_2, \ldots iid, is $\{X_{T+n}\}_{n>0}$ independent of F_T for all T? Yes.

Examples of Stopping Times:

- Constants
- If X_n is an adapted process, and A \in F, The first entry time into A is a stopping time.

Chapter 5

1. Define: Martingale (or sub, or super)

 X_n on (Ω, F, P, F_n) , s.t.

- X_n is adapted to F_n.
- $E|X_n| < \infty$ for each n.
- $E[X_{n+1}|F_n] = X_n$ a.s. $\forall n. (or \ge, or \le resp.)$

2. Name a Martingale Theorem

- Stopping Time (Super)Martingale Prop: If T is a stopping time and X_n is a (super)mart, then $X_{T \wedge n}$ is a (super)mart.
- Submartingale Convergence: Suppose that X_n is a sub-martingale with $\sup_n E[X_n^+] < \infty$. Then for some $X_n \to X$ a.s., where $E|X| < \infty$.
- Martingale Convergence: If X_n is a martingale with $\sup_n E[X_n] < \infty$, then $X_n \to X$ a.s. and $E[X] < \infty$.
- Nonnegative SuperMartingale Convergence: If X_n is a super-martingale with $X_n \ge 0$, then $X_n \to X$ a.s. and $E[X] \le E[X_0]$
- **Galton-Watson**: Let ξ_i^n , $i \ge 1$, $n \ge 0$ be iid nonnegative integer-valued r.v.s with a common $\mu := E[\xi_i^n] \in (0, \infty)$. Define $Z_0 = 1$ and $Z_{n+1} = \{\xi_1^n + ... + \xi_{Z_n}^n \text{ if } Z_n > 0; \text{ and } 0 \text{ if } Z_n = 0.$ Then, $(Z_n/\mu^n)_{n \ge 0}$ is a martingale with respect to $F_n = \sigma(\xi_1^m : i \ge 1, 0 \le m < n)$.
- 3. Does (a version of 1) always have _____ property (related to 2)?
 - Do supermartingales always converge a.s.? Not necessarily, it's guaranteed when X_n nonnegative.
 - If μ <1, Then P(extinction) = ? P(extinction) = 1.
- 4. Question that leads to a Counterexample/Example.
 - When μ =1, is P(extinction) equal to 1? Only when P(ξ_i =1) <1.
 - From Durrett Exmpl. 5.2.3: Do nonnegative martingales converge in L¹? Not always. Let S_n be a symmetric simple random walk with $S_0 = 1$, i.e., $S_n = S_{n-1} + \xi_n$ where ξ_1 , ξ_2 , . . . are i.i.d. with $P(\xi_i = 1) = P(\xi_i = -1) = 1/2$. Let $N = \inf\{n : S_n = 0\}$ and let $X_n = S_{N^i n}$. Since the martingale property is closed under stopping times, X_n is a nonnegative martingale. The Nonnegative SuperMartingale Convergence Theorem implies X_n converges a.s. to a limit $X_\infty < \infty$ that must be = 0, since convergence to k > 0 is impossible. (If $X_n = k > 0$ then $X_{n+1} = k \pm 1$.) Since $EX_n = EX_0 = 1$ for all n and $X_\infty = 0$, convergence cannot occur in L^1 . $E[X_n X_\infty] = E[X_n] \rightarrow 1 \neq 0$.
 - Consider the random walk S_n=X₁+····+X_n starting at zero with X's having P(X_i=1) = P(X_i=-1) = ½, a martingale. Now if T=inf{n≥0:S_n=1}. Can we bound T?
 No. For any n ∈ {1,2,...} we have P(S_k≤0 for all k≤n)≥P(X₁=...=X_n=-1)=1/2ⁿ since {S_k≤0 for all k≤n}⊆{T>n}, this implies P(T>n)≥P(S_k≤0 for all k≤n)≥1/2ⁿ>0. As n∈N is arbitrary, this proves that T is unbounded.
 - Do all Martingales which converge in probability, also do so in L¹?
 No. Any martingale which converges almost surely but not in L¹ does the job (since a.s. conv. implies conv. in prob.); see example 5.2.3 above.

• If $E(X_{n+1}|X_n)=X_n$ for all n, must X_n be a martingale (instead of $E(X_{n+1}|F_n)=X_n$)?

No. Let $(Y_j)_{j\in\mathbb{N}}$ be a sequence of iid r.v. such that $EY_j=0$. Fix $N\in\{1,2,...\}$ and define: $X_n:=\sum_{j=1}^n Y_j$ for all $n\leq N$, and $X_n:=\sum_{j=1}^n Y_j+Y_1-Y_2=X_N+Y_1-Y_2$ for all n>N.

For n \leq N and n > N + 1, the condition $E(X_n|X_{n-1})=X_{n-1}$ is obviously satisfied.

For n=N+1, we have $E(X_{N+1}|X_N)=X_N+E(Y_1|X_N)-E(Y_2|X_N)$. Since $(Y_j)_{j\in N}$ is identically distributed and independent, we have $E(Y_1|X_N)=E(Y_2|X_N)$ and therefore $E(X_{N+1}|X_N)=X_N$. On the other hand,

$$\mathbb{E}(X_{N+1} \mid \mathcal{F}_N) = X_N + 2 \underbrace{\mathbb{E}(Y_1 \mid \mathcal{F}_N)}_{\mathbb{E}(X_1 \mid \mathcal{F}_N) = X_1} - \underbrace{\mathbb{E}(Y_1 + Y_2 \mid \mathcal{F}_N)}_{\mathbb{E}(X_2 \mid \mathcal{F}_N) = X_2} = X_N + 2Y_1 - (Y_1 + Y_2)$$

$$= X_{N+1} \neq X_N.$$

So, X_n is not a martingale.

1. Define: Optional Stopping Sigma-Field

Let $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\geq 0}, \mathbb{P})$ and *T* be stopping time.

Denote by \mathcal{F}_T , the σ -field of "events which occur prior to time T."

In symbols: $\mathcal{F}_T := \{A \in \mathcal{F} : A \cap \{T \le n\} \in \mathcal{F}_n, \ \forall n \ge 0\}.$

2. Name an Optional Stopping Time Theorem

Optional Stopping Thm
for SubMarts
(or mart)

If S,T are stopping times $w/\mathbb{P}(S \leq T < \infty) = 1$, and $(X_{T \land n})_{n \geq 0}$ is UI submart, then $\mathbb{E}[X_T | \mathcal{F}_S] \geq X_S$ a.s. Consequently, $\mathbb{E}[X_S] \leq \mathbb{E}[X_T]$. (switch to ='s for mart)

3. Does (a version of 1) always have _____ property (related to 2)?

- If T is a stopping time, then is F_T a Sigma field? Yes
- If X_n is UI sub-martingale and T a stopping time, is X_{T^n} UI? Yes
- If S \leq T are stopping times, then is $F_T \subseteq F_S$? No, but $F_S \subseteq F_T$.
- 4. Question that leads to a Counterexample/Example.
 - If T is a stopping time, and X_n adapted, then is $X_T \in F_T$? Not necessarily, this is only guaranteed when $P(T < \infty) = 1$.
- 1. Define: Conditional Expectation

 (Ω, \mathcal{F}, P) w/ $X \in L^1$, $G \subseteq \mathcal{F}$, Y:= $\mathbb{E}[X|G]$ is unique s.t.

Y is *G*-measurable and $\mathbb{E}|Y| < \infty$.

 $\mathbb{E}[\mathbb{E}[X|G]1_A] = \mathbb{E}[Y1_A] = \mathbb{E}[X1_A], A \in G$

- 2. Name a Conditional Expectation Theorem
 - Conditional MCT: Let $G \subseteq \mathcal{F}$.

Let $X, X_n \ge 0$ be integrable r.v.s and $X_n \uparrow X$.

Then $\mathbb{E}[X_n|G] \uparrow \mathbb{E}[X|G]$ a.s.

• Conditional DCT: Let $G \subseteq \mathcal{F}$.

If $X_n \to X$ a.s. and $|X_n| \le Y$ for some integrable r.v. Y.

Then
$$\mathbb{E}[X_n|G] \to \mathbb{E}[X|G]$$
 a.s.

• Conditional Jensen's: Let $G \subseteq \mathcal{F}$.

If
$$\varphi : \mathbb{R} \to \mathbb{R}$$
 is convex, $\mathbb{E}[X] < \infty$ and $\mathbb{E}[\varphi(X)] < \infty$,
then $\mathbb{E}[\varphi(X)|G] \ge \varphi(\mathbb{E}[X|G])$ a.s.

- 3. Does (a version of 1) always have _____ property (related to 2)
- 4. Question that leads to a Counterexample/Example.
 - If X,Y are two random variables and E(X|Y)=E(X), are X and Y independent? Not necessarily. Let X∈{-1,0,1}, each with probability ⅓. Let Y=X². Note that X and Y are not independent. However, observe that E(X|Y=0)=0 and E(X|Y=1) = ⅓ (-1) + ⅓(1) = 0, so E(X|Y)=0=E(X) with probability 1.
- 1. Define: Uniform Integrability

Family of r.v.s $(X_{\alpha})_{\alpha \in \Lambda}$ is uniformly integrable (*UI*) if

$$\sup\nolimits_{\alpha\in\Lambda}\mathbb{E}[|X_\alpha|1_{\{|X_\alpha|>M\}}\,]\,\to\,0\text{ as }M\to\infty.$$

Remrk: Since $\mathbb{E}|X_{\alpha}| \leq M + \mathbb{E}[|X_{\alpha}|1_{\{|X_{\alpha}| > M\}}]$, then $UI \Rightarrow L^{1}$ -bounded uniformly for $(X_{\alpha})_{\alpha \in A}$.

- 2. Name a UI Theorem
 - Sub σ-field UI Lemma: Let X∈L¹(Ω,F,P). Then, {E[X|G]:G a σ-field ⊂F} is UI. Used in Levy's Fwd Law.
 - If $X_n \rightarrow X$ in probability, then TFAE:
 - \circ {X_n} is UI.
 - $\circ \quad X_n \rightarrow X \text{ in } L^1. \quad E[X_n X] \rightarrow 0.$
 - \circ $E|X_n| \rightarrow E|X| < \infty$.
 - Convergence in Prob Corollary:
 - o If $X_n \rightarrow X$ in prob. and $\{X_n\}$ is $UI \iff X_n \rightarrow X$ in L^1 .
 - If $X_n \rightarrow X$ in prob and $|X_n| \le Y$ for some $Y \in L^1$ (L^1 bounded), then $X_n \rightarrow X$ in L^1 .
 - Submartingale Equivalencies Thm: For a submart X_n, TFAE:
 - \circ {X_n} is UI.
 - X_n converges a.s. and in L¹.
 - X_n converges in L¹.
 - o If X_n is a martingale, then \exists integrable r.v. X so that $X_n = E[X|F_n]$.

- 3. Does (a version of 1) always have _____ property (related to 2)?
 - Do UI sub martingales converge almost surely? Yes.
- 4. Question that leads to a Counterexample/Example.
 - For a reverse martingale $(X_{-n})_n$, clearly, $E[X_0]=X_{-n}$, for each $n\in\{1,2,...\}$. Is $E[X_0 \mid F_{-n}]$ UI? Yes. Proof: Since $(X_{-n})_n$ is a martingale, we have: $E[X_0]<\infty$. So by the Subsigma Field UI Lemma, we have $E[X_0 \mid F_{-n}]$ is UI.
 - Durrett Example 5.5.1. Suppose X_1, X_2, \ldots are UI and $X_n \rightarrow X$ a.s. Need $E(X_n|F)$ converge a.s.?

No. Let Y_1, Y_2, \ldots and Z_1, Z_2, \ldots be independent r.v.'s with $P(Y_n = 1) = 1/n, \ P(Y_n = 0) = 1 - 1/n, \ P(Z_n = n) = 1/n, \ P(Z_n = 0) = 1 - 1/n.$ So our counterexample uses $X_n := Y_n Z_n$. Observe that $E(X_n := |X_n| \ge 1) = n/n^2$, so X_n is UI. Also, $P(X_n > 0) = 1/n^2$ so $\Sigma P(X_n > 0) < \infty$, $P(\{X_n > 0\} \text{ i.o.}) = 0$, and the Borel-Cantelli lemma implies $X_n \to 0$ a.s. Let $F = \sigma(Y_1, Y_2, \ldots)$. Then, $E(X_n|F) = Y_n E(Z_n|F) = Y_n E[Z_n] = Y_n$. Since $Y_n \to 0$ in $Y_n \to 0$

- Does every sequence X_n which converges almost surely, also converge in L¹?
 No, take the sequence n · 1_[0,1/n], and note that it converges almost surely to zero. Also note that E[n · 1_[0,1/n]] = 1 for all n. So, Lim E[n · 1_[0,1/n]-X] = LimE[n · 1_[0,1/n]] = 1 ≠ 0.
- For a martingale X_n does UI imply integrability of sup|X_n|?
 No, but the counterexamples are not trivial.
- Non-trivial martingale which converges almost surely to 0

Let $Y_1, Y_2,...$ be nonnegative i.i.d. random variables with $E[Y_m]=1$ and $P(Y_m=1)<1$.

- (i) Show that $X_n = \prod_{m \le n} Y_m$ defines a martingale. (ii) Use an argument by contradiction to show $X_n \to 0$ a.s.
- (i) is easy to check.
- (ii) Let X: = $\lim X_n$. The Hewitt-Savage zero one law says (since $X \in \{\text{exchangeable sigma field}\})$ that X is almost surely a constant. Also, $X = Y_1 \cdot \prod_{i=2}^{\infty} Y_i$ has the same distribution as $Y_1 \cdot X$. Since Y_1 is not constant a.s., this forces $X \in \{0, \infty\}$, but $X \neq \infty$ since by Fatou and Y_n independence we have: $E(X) = E(\lim X_n) = E(\lim X_n) = E(\lim X_n) = \lim (\lim X_n) = \lim (\lim$

Chapter 6

1. Define: Markov Chain

An $\{F_n\}$ -adapted stochastic process X_n taking values in (S,S) is called a Markov chain if it has the **Markov Property**: $P(X_{n+1} \in B|F_n) = P(X_{n+1} \in B|X_n)$ a.s. for each $B \in S$, $n \ge 0$.

- 2. Name a Markov Chain Theorem
 - **Decomposition Theorem**: Let $R = \{x : \rho_{xx} = 1\}$ be the recurrent states of a Markov chain. R can be written as $\cup_i R_i$, where each R_i is closed and irreducible. [This results shows that for the study of recurrent states we can, without loss of generality, consider a single irreducible closed set.]
 - For an irreducible and recurrent chain (Corolary 6.46):
 - The stat/inv measures are unique up to constant multiples.
 - o If μ is a stat/inv measure, then $\mu(x)>0$ for all x.
 - If p is irreducible and has a stationary distribution π .
 - Calculating Stat/Inv Distribution: $\pi(x)=1/E_{\nu}[T_{\nu}]$.
 - \circ **Theorem D6.5.7**: Any other stationary measure is a multiple of π .

- **Theorem 6.70** (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov chain with stationary distribution π . Then, $p^n(x,y) \rightarrow \pi(y)$ as $n \rightarrow \infty$, for all $x,y \in S$.
- Theorem 6.62 (Asymptotic Density of Returns): Let $y \in S$ be recurrent, and $N_n(y) = \sum_{i=1}^{n} 1_{\{X = y\}}$, then $\lim_{n \to \infty} N_n(y) = 1/E_y[T_y] 1_{\{T_y < \infty\}}$, P_x a.s.
- 3. Does (a version of 1) always have _____ property (related to 2)?
- 4. Question that leads to a Counterexample/Example.
 - **Multivalued Markov Chain**: If ξ_0, ξ_1, \ldots are iid \in {H,T}, each with p=½, then X_n :={ ξ_n, ξ_{n+1} } is a Markov chain.
 - (HW 3): If ξ_0, ξ_1, \ldots are iid∈ $\{-1,1\}$ with p= $\frac{1}{2}$, and $S_0=0$, $S_n:=\xi_1+\xi_2+\ldots+\xi_n$, and $X_n=\max\{S_m:0\leq m\leq n\}$. Then is X_n is a Markov chain? No. Observe the sequence $(X_1,X_2,X_3)=(1,1,1)$. This can occur if $(S_1,S_2,S_3)=(1,0,1)$, or if $(S_1,S_2,S_3)=(1,0,-1)$. Therefore, we have: $P(X_4=2|X_1=1,X_2=1,X_3=1)=(1/2)\cdot(1/2)=1/4$. Alternatively, take the sequence $(X_1,X_2,X_3)=(0,0,1)$, and observe that this only occurs in only one way, namely if $(S_1,S_2,S_3)=(-1,0,1)$. Therefore, $P(X_4=2|X_1=0,X_2=0,X_3=1)=1\cdot(1/2)=1/2$. Therefore, since the dependence includes more than just the previous value, X_n is not a Markov chain.

1. Define: Stationary Distribution

It's a stationary/invariant measure that is also a probability measure: $\pi p = \pi$ such that $\pi(y) = \sum_{x \in S} \pi(x) p(x,y)$, and $\sum_{x \in S} \pi(x) = 1$. It represents a possible equilibrium for the chain.

- 2. Name a Stationary DistributionTheorem
 - If p is irreducible and has a stationary distribution π .
 - Calculating Stat/Inv Distribution: $\pi(x)=1/E_x[T_x]$.
 - \circ **Theorem D6.5.7**: Any other stationary measure is a multiple of π.
 - Recurrence from Positive Stat/Inv Distributions: If π is a stationary/invariant distribution of a Markov chain and $\pi(x)>0$ for some x, then that x is recurrent.
 - **Theorem 6.70** (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov chain with stationary distribution π . Then, $p^n(x,y) \rightarrow \pi(y)$ as $n \rightarrow \infty$, for all $x,y \in S$.
- 3. Does (a version of 1) always have _____ property (related to 2)?
 - What are sufficient conditions for a Markov chain's stat/inv measures to be unique up to constant multiples? That it be irreducible and recurrent.
 - What are sufficient conditions for a Markov chain's stat/inv measure, If it exists, to have the property μ(x)>0 for all x? That it be irreducible and recurrent.
 - What are sufficient conditions for a Markov chain's stat/inv distribution, if it exists, to be unique? That it be irreducible and recurrent.
 - Assume a Markov chain is irreducible and recurrent, what are sufficient conditions to allow us to conclude that the stat/inv distribution cannot exist? The stat/inv measure has infinite mass.
 - If π is a stat/inv distribution and $\pi(x)>0$, what we know about x? It is recurrent.
 - If you have an irreducible Markov chain, and there is a positive recurrent value, does this imply the existence of a stationary distribution? Yes.
 - If you have an irreducible Markov chain, and every state is positive recurrent, does this imply the existence of a stationary distribution? Yes.
 - If you have an irreducible Markov chain that has a stationary distribution, does this imply the existence of a positive recurrent value? Yes.

4.	Question	that lead	s to a	Counterexam	ple/Example.
	~~~~	tilat ioaa	<b></b>	- Counton Chain	P10/ = /\dilip10

- Let X_n be a Markov chain, where S is the state space and P is the transition matrix. Is every closed class recurrent? No, for example a biased random walk on the integers is transient. *Finite* closed classes, on the other hand, are always recurrent.
- 1. Define: Markov Chain Recurrence

A state y∈S is called recurrent if  $\rho_{yy}$ =1, and is called transient if  $\rho_{yy}$ <1.

- 2. Name a Recurrence Theorem
  - **Decomposition Theorem**: Let  $R = \{x : \rho_{xx} = 1\}$  be the recurrent states of a Markov chain. R can be written as  $U_iR_i$ , where each  $R_i$  is closed and irreducible. [This results shows that for the study of recurrent states we can, without loss of generality, consider a single irreducible closed set.]
  - **Theorem 6.62** (Asymptotic Density of Returns): Let y∈S be recurrent. Then  $\lim_{n} N_n(y)/n = (1/E_v[T_v])1_{\{T_v < \infty\}}$ ,  $P_x$  a.s.
- 3. Does (a version of 1) always have _____ property (related to 2)?
- 4. Question that leads to an Counterexample/Example.

#### 1. Define: Markov Chain Irreducibility

Markov chain is irreducible if it is possible to get to any state from any state. Formally, if its state space is a single communicating class, i.e.,  $x \leftrightarrow y$  for all  $x,y \in S$ .

- 2. Name an Irreducibility Theorem
  - **Decomposition Theorem**: Let  $R = \{x : \rho_{xx} = 1\}$  be the recurrent states of a Markov chain. R can be written as  $U_i R_i$ , where each  $R_i$  is closed and irreducible. [This results shows that for the study of recurrent states we can, without loss of generality, consider a single irreducible closed set.]
  - For an irreducible and recurrent chain (Corolary 6.46):
    - The stat/inv measures are unique up to constant multiples.
    - o If  $\mu$  is a stat/inv measure, then  $\mu(x)>0$  for all x.
  - If p is irreducible and has a stationary distribution  $\pi$ .
    - Calculating Stat/Inv Distribution:  $\pi(x)=1/E_{\star}[T_{\star}]$ .
    - $\circ$  **Theorem D6.5.7**: Any other stationary measure is a multiple of  $\pi$ .
    - **Theorem 6.70** (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov chain with stationary distribution  $\pi$ . Then,  $p^n(x,y) \rightarrow \pi(y)$  as  $n \rightarrow \infty$ , for all  $x,y \in S$ .
- 3. Does (a version of 1) always have _____ property (related to 2)?
- 4. Question that leads to a Counterexample/Example.
  - If an irreducible Markov chain has period 2, then for every state i∈S do we have (P_{ii})² > 0? No, consider P=

Note that  $P^2=Id$ , so period=2 and  $x \leftrightarrow y$ . So it is irreducible. But,  $P_{ii}=0$ , so  $(P_{ii})^2=0$ .

### Other Counterexamples/Examples

- Are Martingales always Markov processes?
  - No, assume that  $(Z_t)_{t\geqslant 2}$  are independent, integrable, nonconstant (say, standard normal distributions),  $\mu=0$ , and  $Z_t$  independent of some  $X_0$ , where  $X_0:=X_1:=1$  and  $X_t:=X_{t-1}+Z_tX_{t-2}$  for every  $t\geqslant 2$ .  $F_n=\sigma\{X_1,\ldots,X_n\}$ . Then  $E[X_t\mid F_{t-1}]=E[X_{t-1}\mid F_{t-1}]+E[Z_tX_{t-2}\mid F_{t-1}]=X_{t-1}+X_{t-2}E[Z_t\mid F_{t-1}]=X_{t-1}$  for every  $t\geqslant 1$  (hence, if  $X_0$  is integrable,  $(X_t)_{t\geqslant 0}$  is a martingale) but  $(X_t)_{t\geqslant 0}$  is not a Markov process since the conditional distribution of  $X_t$  on  $F_{t-1}$  does not depend on  $X_{t-1}$  only, but on  $(X_{t-1},X_{t-2})$ .
- If  $X_n$  is a homogeneous Markov chain, is it true that  $X_{n^2}$  is also a homogeneous Markov chain? No. Consider the random walk on  $\{...,-1,0,1,...\}$  that with probability 1/3 each either: stays at its position, goes to the right, or to the left. We consider the particular transition probability:  $p^n(0,2):=P(X_{n^2}=2\mid X_{(n-1)^2}=0)$ , which if  $X_n$  is a homogeneous Markov chain, should not depend on n. But guess what? It depends on n. We have  $p^1(0,2)=P(X_1=2\mid X_n=0)=0$ , while  $p^2(0,2)=P(X_4=2\mid X_1=0)>0$ .
- If  $X_n \in \{-1,1\}$ ,  $S_0 = 0$ , and  $S_n := X_1 + ... + X_n$ . Then is  $(|S_n|)_{n \ge 0}$  a Markov-chain? Not necessarily. Let  $F_n = \sigma \{= X_1, ..., X_n\}$ . It is not a markov chain unless  $p = \frac{1}{2}$  (probability of a step to the left), and a counterexample is to take n = 1; then  $|S_1| = 1$  but  $P(|S_2| = 2) = p \ne \frac{1}{2}$  if the first step was to  $S_1 = -1$ , but is  $P(|S_2| = 2) = 1 - p \ne \frac{1}{2}$  if the first step was to  $S_1 = +1$ . So,  $P(|S_2| = 2 : F_1) \in \{p, 1-p\}$  is not equal to  $P(|S_2| = 2 : |S_1|) = \frac{1}{2}(1-p) + \frac{1}{2}p = \frac{1}{2} \notin \{p, 1-p\}$ , and  $(|S_n|)_{n \ge 0}$  is not a Markov-chain
- Does every chain that has a stationary distribution have a limiting distribution? No.

Recall that a Markov chain has a limiting distribution if  $\pi_j = \lim_{n \to \infty} p^n_{ij}$ ,  $\forall i \in S$ , exists. In particular, if the limit does not depend on the starting state (and hence distribution) of the chain. We know a Markov Chain  $\{X_n\}$  with a stat. distrib.  $\mu$  as its initial distribution is a stationary process, because if  $X_0 \sim \mu$  is a stationary distribution, then for each n,  $X_n \sim \mu p_{n-1} = \mu$ . So,  $(X_0, X_1, \cdots, X_n) \sim (X_m, X_{m+1}, \cdots, X_{m+n})$ . Durrett said a special case to keep in mind for counterexamples is the Markov chain:  $X_n : \Omega \to S = \{0,1\}$  with transition probability p(0,1) = p(1,0) = 1, and stationary distribution  $p(0) = p(1) = \frac{1}{2}$ . Now let  $p(0,1) = \frac{1}{2}$ . Now let  $p(0,1) = \frac{1}{2}$ . Note that it does not have a limiting distribution. Durrett is demonstrating that this chain satisfies stationarity, and that it is useful to keep this Markov chain in mind when *picturing* what stationarity means. In particular this is a commonly used counterexample to distinguish between stationary distributions, and limiting distributions.

Regarding the limiting distribution, note that in this case  $\lim_{n\to\infty} p^n_{01}=1$  and  $\lim_{n\to\infty} p^n_{11}=0$ , so the limit does not exist. Any chain that has a limiting distribution necessarily is stationary (since  $\pi$  can be shown to satisfy the stationarity property). The converse however is not true: and this is what the counterexample shows, since the limit above only exists if the chain is started from  $\mu(0)=\mu(1)=1/2$ , and not from an arbitrary distribution. In general for finite, irreducible Markov chains

- A stationary distribution always exists.
- Existence of a limiting distribution implies stationarity.
- If, in addition to being finite and irreducible, the chain is also aperiodic, then a limiting distribution is guaranteed to exist.