Oral Probability Questions

These are notes made in preparation for oral exams involving the following topics in probability: Random walks,
Martingales, and Markov Chains. Textbook used: "Probability: Theory and Examples," Durrett.

Chapter 4

1. Define: Random Walk
Let X1,.X5, ... beiid taking values in B¢

and let S, = X +...+X,. S, 18 a random walk.

2. Name a Random Walk Theorem
e RW Possibilities on R: Four possibilities, one w/prob = 1.
o S,=0vn, (recurrent)
o §,—*», (transient)
o -o=liminfS <limsupS =<« (recurrent)
e RWRecurrence on R*:
o S, recurrentin d=1if S /n—0 in probability. (or SSRW)
o §,recurrentin d=2 if Sn/\/n converges in distribution to a non-deg. norm. dist. (or SSRW)
o §, transient in d23 if is "truly three-dimensional"
e RW Equivalencies Theorem: Let 1.=0 and 1, =inf{m>7_,:S_ =0} be time of nth return to 0. Then,
P(m<e)=1 & P(S,=0i.0.)=1 & > _P(S,=0)=>.
e RW Convergence/Divergence Theorem: Convergence (divergence) of Z P([S,|<€), Ve>0 is
sufficient to determine transience (recurrence) of S,..

3. Does (aversion of 1) always have property (related to 2)?
e Foriid Xi,X.,..., is exchangeable sigma field ¢ trivial? Yes. By Hewitt Savage 0-1. P(A)€{0,1} for
each Aeg

e Types of sets for RW recurrent values (V)? Empty set, or a closed subgroup of R®.
e If V(recurrent values) is a closed subgroup, V=? V={Possible Values}
4. Question that leads to a Counterexample/Example.

e Are SSRW always recurrent? They are on d<3.

e Are RW on R? always recurrent w/ d<3? No, only w/ SSRW or w/ correct convergence (see
above)

e Will Wald’s theorem hold with a SSRW S =X, +- - - + X , with X € {1} starting at S,=0, with
a stopping time T when S,=s#0? (Wald has X as iid w/E[t]<~ and E[X]<x)
Note that for any SSRW, that the time T to any position S;=s is finite, with probability one.
However, the expected time is infinite. Therefore, it does not satisfy one of Wald’s Theorem’s
assumptions.
Proof by Contradiction: Having conditioned on C={S;=X, +- - - + X; = s}, then the conditioned
expectation E(X,+- - -+X; | C) = s is evident; furthermore, since X = 1 for all n with equal
probability, we easily see that y=E(X,) = 0. Under these observations, assuming Wald's Identity
(E[S{]=p+T), we obtain an immediate contradiction (s # 0« T).
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e If S,T are stopping times, then is it necessary that (S — T) is a stopping time?
S-T is not necessarily a stopping time. For a counterexample, consider the simple random
walk (Xn) on{...,-1,0,1,...} starting at X,=0, and let S:=inf{n:Xn=1} and T:=1. Note that
{S-T=1}={S=2} which is not X1-measurable.

Examples of stopping times

e Toillustrate some examples of random times that are stopping rules and some that are not, consider
a gambler playing roulette with a typical house edge, starting with $100 and betting $1 on red in each
game:

Playing exactly five games corresponds to the stopping time 1= 5, and is a stopping rule.

Playing until he either runs out of money or has played 500 games is a stopping rule.

Playing until he is the maximum amount ahead he will ever be is not a stopping rule and does not
provide a stopping time, as it requires information about the future as well as the present and past.

e Playing until he doubles his money (borrowing if necessary) is not a stopping rule, as there is a
positive probability that he will never double his money.

e Playing until he either doubles his money or runs out of money is a stopping rule, even though there
is potentially no limit to the number of games he plays, since the probability that he stops in a finite
time is 1.

1. Define: Stopping Time
(€, F.(Fn),n0-IP) a filtered prob space.
Stopping time 7 : Q - Z, U<+ isrv. 8.t {7 < np € F,
vn > 0, or equivalently, {7 = n} € F, foralln > 0.

2. Name a Stopping Time Theorem
o Wald's Identity: Let Xi,X.,... be iid w/p:=E[X ]<«. Set Xo and let S =Xi+...+X , and T be stopping
time w/E[T]<«. Then, E[S;]=pE[T].
e [f S,T,T, are stopping times on (Q,F,F,,P). Then so are:
o S+T, SAT:=min(S,T), SvT:=max(S,T)
o liminf T andinf T, limsup,T,and sup, T,
3. Does (aversion of 1) always have property (related to 2)?
e Are constants stopping times? Yes.
4. Question that leads to a Counterexample/Example.
If stopping time T and F,, and X,,X,,... iid, is {X.,,},., independent of F for all T? Yes.
Examples of Stopping Times:
e Constants
e If X, Is an adapted process, and AeF, The first entry time into A is a stopping time.
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Chapter 5

1. Define: Martingale (or sub, or super)
X on (Q,FPF,), s.t.
e X is adaptedtoF,.
e E|X | <« for each n.
e E[X [F,]=X as.vn. (or2, or=<resp.)

2. Name a Martingale Theorem
e Stopping Time (Super)Martingale Prop: If T is a stopping time and X is a (super)mart, then
X; ., IS @ (super)mart.
e Submartingale Convergence: Suppose that X_ is a sub-martingale with sup E[X *]<«. Then for
some X, we have X —Xa.s., where E|X|<e.
Martingale Convergence: If X is a martingale with sup E|X |<«, then X —Xa.s. and E[X|<.
Nonnegative SuperMartingale Convergence: If X is a super-martingale with X 20, then X —X
a.s. and E[X]<E[Xo]
e Galton-Watson: Let ¢,i21,n=0 be iid nonnegative integer-valued r.v.s with a common
u:=E[¢]€(0,~). Define Zo=1 and Z,,,={C:"+...+¢, " if Z>0;and 0 if Z =0.
Then, (Z,/u"),., is @ martingale with respect to F =0(g:™ : i21, 0sm<n).
3. Does (a version of 1) always have property (related to 2)?
e Do supermartingales always converge a.s.? Not necessarily, it's guaranteed when X, nonnegative.
e [fu<1, Then P(extinction) = ? P(extinction) = 1.
4. Question that leads to a Counterexample/Example.
e When p=1, is P(extinction) equal to 1? Only when P(§=1) <1.
e From Durrett Exmpl. 5.2.3: Do nonnegative martingales converge in L'?
Not always. Let S, be a symmetric simple random walk with S, =1, i.e.,S =S __, +§ where &, ¢,, .
ccareiid. withP(€ =1)=P( =-1)=1/2.LetN=inf{[n: S, =0}and let X, = S, Since the
martingale property is closed under stopping times, X is a nonnegative martingale. The
Nonnegative SuperMartingale Convergence Theorem implies X, converges a.s. to a limit X, < e
that must be = 0, since convergence to k > 0 is impossible. (If X =k > 0then X ,, =k £ 1.) Since
EX = EX, =1 forallnand X_ = 0, convergence cannot occur in L". E[X -X_| = E[X]— 1 #0.
e Consider the random walk S _=X,+---+X_ starting at zero with X's having P(X.=1) = P(X;=-1) =
2, a martingale. Now if T=inf{n20:S_=1}. Can we bound T?
No. For any n € {1,2,...} we have P(S,<0 for all ksn)zP(X,=...=X =-1)=1/2" since {S,<0 for all
ksn}c{T>n}, this implies P(T>n)=P(S,<0 for all ksn)=1/2">0. As neN is arbitrary, this proves that T
is unbounded.
e Do all Martingales which converge in probability, also do so in L'?
No. Any martingale which converges almost surely but not in L' does the job (since a.s. conv.
implies conv. in prob.); see example 5.2.3 above.
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e IfE(X, ,1X,)=X, for all n, must X  be a martingale (instead of E(X ,IF )=X)?
No. Let (Y))y be a sequence of iid r.v. such that EY=0. FixN € {1,2,...} and define: X :=3 _,"Y; for
all n=N, and X ;=3 _ "Y+Y,-Y,=X+Y,-Y, for all n>N.
For nsN and n>N+1, the condition E(XnIX _,)=X _, is obviously satisfied.
For n=N+1, we have E(X{,IX{)=X +E(Y,IX{)-E(Y,IX|). Since (Yj),. is identically distributed and
independent, we have E(Y,IX,)=E(Y2|XN) and therefore E(X,.,IX,)=X. On the other hand,

E(Xni1 | Fy) = Xy +2E(Y; | Fy) —EM + Yo | Fy) = X+ 2Y,- (Y,+Y,)
E(X4|Fy)=X1 B(Xs|Fy)=X,
= Xy # Xn.

So, X, is not a martingale.

1. Define: Optional Stopping Sigma-Field
Let (Q, F,(Fx),»-F) and 7 be stopping time.
Denote by Fr, the o-field of "events which occur prior to time 7."
Insymbols: Fr =44 € F:AN{T <ny e F,, Vn=>0}.

2. Name an Optional Stopping Time Theorem

Optional Stopping Thm If S,7 are stopping times w/P(S < T« ow0) = 1,
for SubMarts and (X7 ), 18 Ul submart, then E[X7| Fy] > Xy as.
(or mart) Consequently, E[ Xy ] < E[X7]. (switch to ="¢ for mart)
3. Does (aversion of 1) always have property (related to 2)?

e |If T is a stopping time, then is F; a Sigma field? Yes
e If X, is Ulsub-martingale and T a stopping time, is X;,, UI? Yes
e [f S<T are stopping times, then is F;.SF4? No, but F,CF..

4. Question that leads to a Counterexample/Example.
e If T is a stopping time, and X adapted, then is X; eF,;? Not necessarily, this is only
guaranteed when P(T<~)=1.

1. Define: Conditional Expectation
QF.P)w/X e L, GC F, Y=E[X|G]is unique s.t.
Y18 G-measurable and E| Y| < co.
E[EXG]la] =E[¥la] = E[X14], 4 € G
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2. Name a Conditional Expectation Theorem
e Conditional MCT: LetGc F.

Let X, X, = 0 be integrable rv.is and X, 1 X
Then E[X.|G] T E[LX]|G] a.s.

e Conditional DCT: Let G c F.
If X, - Xas. and |X,| < ¥ for some integrable r.v. Y.

Then E[X.|G] » E[X|G] a.s.
e Conditional Jensen's: Let G c ¥.
Ifp : R - Ris convex, ELX] < oo and E|p(X)| < oo,

then E[p(X)|G] > p(E[X]G]) as.
3. Does (a version of 1) always have property (related to 2)

4. Question that leads to a Counterexample/Example.
e If X,Y are two random variables and E(X|Y)=E(X), are X and Y independent?
Not necessarily. Let Xe{-1,0,1}, each with probability %. Let Y=X?. Note that X and Y are not
independent. However, observe that E(X|Y=0)=0 and E(XIY=1) = %5 (-1) + ¥4(1) = 0, so
E(XIY)=0=E(X) with probability 1.

1. Define: Uniform Integrability
Family of r.v.s (X, )., 1s uniformly integrable (U7) if
sUPgep B[ Xa |1 gr, pan ] = Oas M - oo,
Remrk: Since E|X, | < M + E[|X|1 1z, pary |, then U = L bounded uniformly for (X, )

2. Name a Ul Theorem
e Sub o-field Ul Lemma: Let XeL'(Q,F,P). Then, {E[X|G]:G a o-field cF} is Ul. Used in Levy’s Fwd

aEA"

Law.
e If X —X in probability, then TFAE:
o {X}is UL
o X—XinL. E[X -X —0.

o EX |—=EX|<e.
e Convergence in Prob Corollary:
o IfX—Xinprob.and {X}is U & X — XinL"
o If X,—Xin prob and |X <Y for some YEL" (L* bounded), then X —Xin L".
e Submartingale Equivalencies Thm: For a submart X, TFAE:
o {X}is UL
o X, converges a.s.andinL".
o X, converges inL".
o If X, is a martingale, then 3 integrable r.v. X so that X = E[X|F_].
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3. Does (aversion of 1) always have property (related to 2)?

Do Ul sub martingales converge almost surely? Yes.

4. Question that leads to a Counterexample/Example.

For a reverse martingale (X ), clearly, E[X,]=X_,, for each n€e{1,2,...}. Is E[X,| F_] UI?
Yes. Proof: Since (X,), is a martingale, we have: E[X]J<=. So by the Subsigma Field Ul Lemma,
we have E[X, | F_]is Ul

Durrett Example 5.5.1. Suppose X,,X,, ... are Uland X ,— X a.s. Need E(X,|F) converge
a.s.?

No.LetY,,Y,,...andZ,Z, ... be independentr.v.'s with P(Y, =1) =1/n, P(Y,=0)=1-1/n,
P(Z,=n)=1/n, P(Z,=0)=1-1/n. So our counterexample uses X =Y, Z . Observe that E(X :
IX,[21) = n/n?, so X_is Ul. Also, P(X, > 0) = 1/n* so ZP(X_ > 0)<«, P({X, > 0} i.0.)=0, and the
Borel-Cantelli lemma implies X, — 0 a.s. LetF = o(Y,, Y,,...). Then, E(X |F) = Y.E(Z |F) =

Y E[Z]=Y,.Since Y, — 0in L' but not a.s., the same is true for E(X |F). Since Y P{Y >} =3 1/n
= «, Then, apply Borel-Cantelli.

Does every sequence X, which converges almost surely, also converge in L'?

No, take the sequence n - 1, ., and note that it converges almost surely to zero. Also note that
Eln - 144yl =1foraln. So, LimE[n - 1,,,,-X] =LimE[n - 1,,,.]=1#0.

For a martingale X, does Ul imply integrability of sup|X_|?

No, but the counterexamples are not trivial.

Non-trivial martingale which converges almost surelyto 0

LetY,,Y,,... be nonnegative i.i.d. random variables with E[Y,_]=1 and P(Y _=1)<1.

(i) Show that X =[1]....Y,, defines a martingale. (ii) Use an argument by contradiction to show X —0
a.s.

(i) is easy to check.

(i) Let X: = limX_. The Hewitt-Savage zero one law says (since X € {exchangeable sigma field})
that X is almost surely a constant. Also, X=Y,-[1_.,”Y, has the same distribution as Y,-X. Since Y, is
not constant a.s., this forces Xe {0,~}, but X#« since by Fatou and Y, independence we have:
E(X)=E(limX)=E(lim[],...Y.,)SIimE([1,<.Y.,)=lim[]...,E(Y,,)=1. So X=0, and X — O a.s.

Chapter 6

1. Define: Markov Chain
An {F }-adapted stochastic process X, taking values in (S,S) is called a Markov chain if it has the Markov
Property: P(X ,,€BIF )=P(X ,,€B|X) a.s. for each BES, n=0.

2. Name a Markov Chain Theorem

Decomposition Theorem: Let R={x : p, =1} be the recurrent states of a Markov chain. R can be

written as U,R,, where each R, is closed and irreducible. [This results shows that for the study of

recurrent states we can, without loss of generality, consider a single irreducible closed set.]
For an irreducible and recurrent chain (Corolary 6.46):

o The stat/inv measures are unique up to constant multiples.

o [f yis a stat/inv measure, then p(x)>0 for all x.
If p is irreducible and has a stationary distribution 1.

o Calculating Stat/Inv Distribution: T(x)=1/E,[T,].

o Theorem D6.5.7: Any other stationary measure is a multiple of .
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e Theorem 6.70 (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov
chain with stationary distribution 1. Then, pn(x,y)—T(y) as n—<, for all x,y€S.
e Theorem 6.62 (Asymptotic Density of Returns): Let yeS be recurrent, and N, (y) = > "1,.,,, then
limN,(y)/n=(1/E, [T, )17y« P, @S-
3. Does (aversion of 1) always have property (related to 2)?

4. Question that leads to a Counterexample/Example.

e Multivalued Markov Chain: If §,5,,... are iide{H,T}, each with p="%, then X :={¢,,g
chain.

o (HW3): If§,,8,,... are iide{-1,1} with p="2, and $;=0, S :=§,+&,+...+ , and X =max{S, :
0smsn}. Thenis X is a Markov chain?
No. Observe the sequence (Xi,X2,Xs)=(1,1,1). This can occur if (S:,52,5:)=(1,0,1), or if
(S1,5:2,55)=(1,0,-1). Therefore, we have: P(Xs=2|Xi=1,X.=1,X:=1)=(1/2)-(1/2)=1/4. Alternatively,
take the sequence (Xi,X2,X:)=(0,0,1), and observe that this only occurs in only one way, namely if
(S1,S2,55)=(-1,0,1). Therefore, P(Xs=2|X:=0,X.=0,X:=1)=1-(1/2)=1/2. Therefore, since the
dependence includes more than just the previous value, X is not a Markov chain.

} is a Markov

n+1

1. Define: Stationary Distribution
It's a stationary/invariant measure that is also a probability measure: p=1r such that m(y)=%, _s(X)p(X,y),
and Z, _ 1(x)=1. It represents a possible equilibrium for the chain.
2. Name a Stationary DistributionTheorem
e If pisirreducible and has a stationary distribution Tr.
o Calculating Stat/Inv Distribution: T(x)=1/E [T ].
o Theorem D6.5.7: Any other stationary measure is a multiple of .

e Recurrence from Positive Stat/Inv Distributions: If 1 is a stationary/invariant distribution of a
Markov chain and 11(x)>0 for some x, then that x is recurrent.

e Theorem 6.70 (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov
chain with stationary distribution 1. Then, pn(x,y)—T(y) as n—<, for all x,y€S.

3. Does (aversion of 1) always have property (related to 2)?

o What are sufficient conditions for a Markov chain’s stat/inv measures to be unique up to
constant multiples? That it be irreducible and recurrent.

o What are sufficient conditions for a Markov chain’s stat/inv measure, If it exists, to have
the property p(x)>0 for all x? That it be irreducible and recurrent.

e What are sufficient conditions for a Markov chain’s stat/inv distribution, if it exists, to be
unique? That it be irreducible and recurrent.

e Assume a Markov chain is irreducible and recurrent, what are sufficient conditions to
allow us to conclude that the stat/inv distribution cannot exist? The stat/inv measure has
infinite mass.

If  is a stat/inv distribution and m(x)>0, what we know about x? It is recurrent.
If you have an irreducible Markov chain, and there is a positive recurrent value, does this
imply the existence of a stationary distribution? Yes.

e If you have an irreducible Markov chain, and every state is positive recurrent, does this
imply the existence of a stationary distribution? Yes.

e If you have an irreducible Markov chain that has a stationary distribution, does this imply
the existence of a positive recurrent value? Yes.
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4. Question that leads to a Counterexample/Example.
e Let X, be a Markov chain, where S is the state space and P is the transition matrix. Is
every closed class recurrent? No, for example a biased random walk on the integers is
transient. Finite closed classes, on the other hand, are always recurrent.

1. Define: Markov Chain Recurrence
A state yeS is called recurrent if p =1, and is called transient if p, <1.
2. Name a Recurrence Theorem
e Decomposition Theorem: Let R={x : p,,=1} be the recurrent states of a Markov chain. R can be
written as U,R,, where each R, is closed and irreducible. [This results shows that for the study of
recurrent states we can, without loss of generality, consider a single irreducible closed set.]
e Theorem 6.62 (Asymptotic Density of Returns): Let yeS be recurrent. Then
imN, (y)/n=(1/E, [T, )11, <y P, a-s.
3. Does (aversion of 1) always have property (related to 2)?
4. Question that leads to an Counterexample/Example.

1. Define: Markov Chain Irreducibility
Markov chain is irreducible if it is possible to get to any state from any state. Formally, if
its state space is a single communicating class, i.e., x<>y for all x,yeS.
2. Name an Irreducibility Theorem
e Decomposition Theorem: Let R={x : p,,=1} be the recurrent states of a Markov chain. R can be
written as U,R,, where each R, is closed and irreducible. [This results shows that for the study of
recurrent states we can, without loss of generality, consider a single irreducible closed set.]
e For an irreducible and recurrent chain (Corolary 6.46):
o The stat/inv measures are unique up to constant multiples.
o If yis a stat/inv measure, then u(x)>0 for all x.
e If pisirreducible and has a stationary distribution 1.
o Calculating Stat/Inv Distribution: m(x)=1/E,[T,].
o Theorem D6.5.7: Any other stationary measure is a multiple of .
e Theorem 6.70 (Markov Chain Convergence Theorem): Consider an irreducible, aperiodic Markov
chain with stationary distribution 1. Then, pn(x,y)—T(y) as n—, for all x,yeS.
3. Does (aversion of 1) always have property (related to 2)?
4. Question that leads to a Counterexample/Example.
e If an irreducible Markov chain has period 2, then for every state i€S do we have
(P,)*> 0? No, consider P=

0 1

1 0
Note that P>=Id, so period=2 and x<y. So it is irreducible. But, P,=0, so (P,)?=0.
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Other Counterexamples/Examples

Are Martingales always Markov processes?

No, assume that (Z),., are independent, integrable, nonconstant (say, standard normal distributions),
u=0, and Z, independent of some X, where X:=X,:=1 and X:=X_+ZX_, for every t>2. F = o{X,, ... , X }.
Then E[X, | F,_,]= E[X_,| F._,] + E[ZX_,| F..,] = X_, + X_E[ZIF_,]1=X_, for every t>1 (hence, if X is
integrable, (X)), is a martingale) but (X)), is not a Markov process since the conditional distribution of X
on F,_, does not depend on X _, only, but on (X_;,X._,).

If X, is a homogeneous Markov chain, is it true that X ., is also a homogeneous Markov chain?
No. Consider the random walk on{...,-1,0,1,...} that with probability /4 each either: stays at its position,
goes to the right, or to the left. We consider the particular transition probability:

P"(0,2):=P(X.x= 2 | X,-1y,= 0), which if X is a homogeneous Markov chain, should not depend on n. But
guess what? It depends on n. We have p'(0,2)=P(X,=2 | X,=0)=0, while p?(0,2)=P(X,=2 | X,=0)>0.

If X, €{-1,1}, S;=0, and S _:=X,+...+X . Then is (|S,|),., @a Markov-chain?

Not necessarily. Let F =a{=X,,...,X_}. It is not a markov chain unless p="2 (probability of a step to the left),
and a counterexample is to take n=1; then |S,|=1 but P(|S,|=2)=p # " if the first step was to S,=-1, but is
P(|S,|=2)=1-p # V- if the first step was to S,=+1. So, P(|S,|=2 : F,)€{p, 1-p} is not equal to P(|S,|=2 :

1S,]) = Ya(1-p) + Yep = V2 & {p, 1-p}, and (IS, |),, is Not a Markov-chain

Does every chain that has a stationary distribution have a limiting distribution? No.
Recall that a Markov chain has a limiting distribution if Tr].=limn%p”ij, Vi€eS, exists. In particular, if the limit
does not depend on the starting state (and hence distribution) of the chain.
We know a Markov Chain {X_} with a stat. distrib. y as its initial distribution is a stationary process,
because if X,~p is a stationary distribution, then for each n, X.~pp,_,=H. S0, (X;,X;, =+, X )~ (X, X 1510 XKan)-
Durrett said a special case to keep in mind for counterexamples is the Markov chain: X :Q — S={0,1} with
transition probability p(0,1)=p(1,0)=1, and stationary distribution p(0)=p(1)="2. Now let X,€{0,1}
w/probability ¥z (so not starting with the stat. dist.), so (X,,X,,---)=(0,1,0,---) or (1,0,1,--+) with probability 7=.
Note that it does not have a limiting distribution. Durrett is demonstrating that this chain satisfies
stationarity, and that it is useful to keep this Markov chain in mind when picturing what stationarity means.
In particular this is a commonly used counterexample to distinguish between stationary distributions, and
limiting distributions.
Regarding the limiting distribution, note that in this case lim,__p",,=1 and lim___p",,=0, so the limit does
not exist. Any chain that has a limiting distribution necessarily is stationary (since 1 can be shown to
satisfy the stationarity property). The converse however is not true: and this is what the counterexample
shows, since the limit above only exists if the chain is started from p(0)=p(1)=1/2, and not from an
arbitrary distribution. In general for finite, irreducible Markov chains

e A stationary distribution always exists.

e Existence of a limiting distribution implies stationarity.

e If, in addition to being finite and irreducible, the chain is also aperiodic, then a limiting distribution is

guaranteed to exist.
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