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In the urban landscape where | grew up, the city lights obscured much of the sky. Nonetheless, | found
some clear nights in which to pierce the haze with my little telescope and found fascination in staring at
the stars and planets, speculating about the inner workings of the universe. Now I research celestial
gravity in two of its manifestations: orbital mechanics and black hole gravity waves.

Orbital Mechanics

| wrote my dissertation on the two-body problem. That is, the problem of predicting the motions of two
bodies that are interacting freely due to gravity (imagine two asteroids out in space). Newton solved a
simplified version of the problem, where one assumes that each body is merely a point mass. However,
the full two-body problem (where we do not make such an assumption) is still an open problem.

Since this describes a dynamical system, our first task is to identify equilibria of the system
(configurations where the bodies can remain motionless). However, because the bodies are orbiting each
other, we don't expect a proper equilibrium solution. But we might be able to find "relative equilibria”
(RE), where the bodies are moving (orbiting each other), but they maintain a constant radius, and they do
not rotate relative to each other. Another task is to determine whether these RE are stable, that is, whether
such a configuration, when perturbed, will remain close to the RE.

In my research | approximate the full two-body problem by modeling each
body not as a point mass (as Newton did), but by two point-masses
connected with a massless rod, a "dumbbell” (see the figure).

My research has uncovered:

¢ Nonlinearly stable colinear RE, generalizing previous results.

e The existence of several families of symmetric RE, nonsymmetric
RE (when the dumbbell masses are pairwise equal), and determined
their linear and nonlinear stability.

e A generalized Conley's Perpendicular Bisector Theorem that places
restrictions on the RE configurations allowed with a dumbbell body and second body consisting
of discretized masses.

e Unexpected linearly stable RE when the bodies are parallel, and perpendicular.

Dumbbells Orbiting

To discover these RE, one generates a Lagrangian:
L(rr 7:': 61’ éll 02' 92’ ()i)) = K - U

from the kinetic and potential energies of the configuration. Then the equations of motion result from
using the Euler-Lagrange equation %:—; - :—: = 0, for each degree of freedom q; € {r, ¢, 64, 6,}. Next,
we note that for a RE, the system rotation angle ¢ has symmetry. As a result, this variable does not make
an appearance in our Lagrangian, it is a "cyclic variable." So, by Noether [1], we have a conserved
guantity (angular momentum in our case) obtained by: L := :—g.
We are now free to solve for ¢ in the above equation and use this to eliminate ¢ from our Lagrangian and
equations of motion. The resulting reduced Lagrangian includes a reduced kinetic and potential energy:

Lyeq(r,7,04, 91' 05, 92) = Krea — Urea-



Smale, showed in [2] that after such a reduction, the RE can then be found as critical points of the reduced
potential U,..q. Then if one can find solutions to the system dg, Uyeq = 0, 39, Uyeq = 0, in terms of
particular 84, 6,, then the requirement d,.-U,.; = 0 (which can be rearranged into L(r) = f(r; 64, 65)
allows us (for any angular momentum L) to solve for the radii r of the RE. Using this technique, |
discovered symmetric RE (configurations in which the two bodies are colinear, perpendicular).

Another likely RE configuration is when the masses on the dumbbells are

pairwise equal. And while this is insufficient by itself to satisfy the RE

requirements, setting the dumbbells to be parallel then satisfies the o—@ o O
requirements.

Next, | performed a bifurcation analysis on each of the symmetric RE, using
radius as my bifurcation parameter. Numerically, one observes pitchfork-like
bifurcations for small radii. And is easily verified that 0g, Uy.q and dg, Uy.4 are s

odd functions of 6,, 8, (a requirement for pitchforks). Then, for each symmetric
configuration (64, 6,) = (61, 65), | identified the radius r of any pitchforks by

solving |D(891 Urea, 0o, Ured)(ef-r)| = 0. | then used the Implicit Function
Theorem (after a change of variables) to approximate solutions to the system.
These are asymmetric RE bifurcating from the symmetrical ones.

A bonus to this amended potential method of locating RE, is that if these critical

points are strict minima, Smale showed that they are nonlinearly stable. Symmetric RE.
Determining whether these RE are strict minima requires analyzing whether the  Colinear, Perpendicular
U,.q Hessian is positive definite. This analysis led to the theorem: & Parallel

Stability for Two Dumbbells in Colinear Orbit
RE of the two dumbbell colinear configuration with radii large enough such that 9,.L? > 0 are
stable.

But practically speaking, linear stability can also be of use. So, | linearized the equations of motion, and
required purely imaginary eigenvalues from the resulting system matrix A, evaluated at RE. This leads to
three requirements on the coefficients of this matrix's characteristic polynomial. Satisfying these
requirements for my symmetric RE led to the identification of linearly stable radii for the perpendicular
configuration, as well as stability for the parallel configuration for small radii.

For a more general theory, | also analyzed the accelerations involved in a model which allows one of the
orbiting bodies to consist of many discretized masses. This led to the theorem:

Perpendicular Bisector Theorem for RE of a Dumbbell and a Discretized Body
Let a dumbbell and a discretized body be in a planar relative
equilibrium. The dumbbell point masses can be colinear with
the center of mass of the discretized body. Alternatively, I
consider the four open quadrants determined by the lines I

through the dumbbell's rod and that rod's perpendicular I

bisector. If the point masses of the discretized body are located :

solely in the open_qua_drants, they cannot be located only in one ) e 688
quadrant, or only in diagonal quadrants. .‘7"1 " ¢ ®




But why do we care about RE of the two-body problem? Practically speaking, the finite resources humans
use on Earth can often be found in asteroids, many of which are irregular in shape. The shapes of these
asteroids and the probes we'll be sending there can be modeled by masses connected by rods. Calculations
a spacecraft will need to make to find a static orbit or RE around these asteroids can benefit from
gravitational models that consider their irregular shapes. Finding these RE is the aim of my research.

Black Hole Gravity Waves

As an undergraduate | conducted research into environmental science with my mathematical modeling
professor, Rikki Wagstrom. Knowing of my interest in celestial objects, upon my graduation (in 2015)
she suggested | join a research team working on black holes. Since then, | have conducted research with
mathematician Michael Green and physicist Ramin Daghigh at Metropolitan State University, St. Paul.
Together, we have published two papers in Physical Review D, and have a third paper in preparation [11].

Einstein taught us that when the universe gives birth to a black hole, it cries out with

gravity waves. My colleagues and | calculate the "sound" that different types of black

holes make at birth, or when otherwise perturbed. A black hole's gravity waves are

analogous to an earthquake's seismographic waves; they can be read as curvy lines on a page (called
waveforms). It was only in 2017 that, for the first time, gravity waves were verifiably detected at the
LIGO and Virgo interferometers. A natural question arises: what can we learn about black holes from
looking at these waveforms? Can we determine the type or size of the black hole?

Mathematical models can be generated in the form of Schrédinger-type wave equations that represent
black hole oscillations of different types. One research goal is to calculate the gravity waves predicted by
these models. As we develop more sophisticated models that more closely mirror real black holes, the
gravity waves they produce should match those found by the gravity wave detectors. That way, when one
detects gravity waves from space, they can compare those waveforms to ones calculated from this type of
research, and thereby determine the type of black hole that generated the waves. Additionally, since there
is still much debate about the exact structure of black holes, we can compare the waveforms predicted by
competing theories to determine which theory is correct.

Gravity waves have frequencies that occur along a spectrum. Each black hole has its own resonant
frequencies due to its geometry. The sum of these gravity wave frequencies constitutes its normal modes.
However, after a perturbation of the black hole, energy is dissipated through the propagation of gravity
waves, and the normal modes decay over time. Because of this dissipation, we refer to these decaying
modes as quasi-normal modes (QNMs). QNMs relationship to waveforms is analogous to the relationship
individual notes have to a musical chord. QNMs are indivisible components which, once added together,
produce the waveform.

I research high-damping QNMs (HQNM) of regular black holes. A regular black hole is one for which
there is no singularity. Instead, the central mass is compact, but finite. Depending upon the quantum
theory of gravity used, regular black holes can have different geometries. Particularly, | have been
studying Bardeen regular black holes. This gravitational theory allows for regular black holes due to the
assumption that, in the presence of very dense mass, space-time becomes "de Sitter-like" [30]. That is, its
dynamics are that of flat space under the influence of dark energy. In other words, space time expands,
and creates an outward pressure to balance the gravitational pressure of the black hole mass.

While much research has found the low-frequency/overtone QNMs of regular black hole gravity waves
[13-29], HQNMs have seen less research. Once perturbed, a black hole starts producing gravity waves,



but HQNMs very quickly relax to an equilibrium. This makes these QNMs harder to detect. However,
HQNMs potentially provide information about a black hole that low-overtone QNMs cannot.

For example, it is known that the small-scale structure of an oscillating medium (think of a guitar string or
flute) is audibly detectable by the HQNMs given off by its oscillation. This is what differentiates the
sound (timbre) of one type of instrument (guitar) from another (flute), even if they're playing the same
note. In a similar way, the small-scale structure of a gravitationally oscillating black hole may be revealed
through analysis of its HQNMs. In fact, [31,32] had attempted to make a connection between the HQNMs
of black holes and quantum gravity, and then later it was established in 2011 [3]. This connects QNMs
with the small-scale structure of black hole space-times.

HQNMs have been calculated for Kerr black holes (rotating, but without electric charge, and with a
singularity) in 1985 [4], and for Schwarzschild black holes (non-rotating, without electric charge, and
with a singularity) in 1993 [5]. However, HQNMs become increasingly difficult to calculate as the model
becomes more complicated.

In our effort to calculate HQNMs, | reviewed [4] and [5], and generated a Mathematica script which
recovered results from both papers and serves as a simultaneous generalization of the procedures therein.
In 2020, we used my script to publish [6] in Physical Review D, which introduced a technique to simplify
the calculations involved in the process of finding the waveforms.

Some mathematical models lend themselves more easily to waveform calculation. For the more difficult
models, we showed that one can replace the Regge-Wheeler potential appearing in the wave equation
with a simplified potential allowing for more easy calculations, while still approximating the waveform to
any accuracy desired. Specifically, we examined how dependent

the calculated QNMs are on a smooth model of the gravitational
potential. This examination led to the realization that the
gravitational waveform can be approximated to arbitrary
precision using either step functions or a piecewise linear
function in place of the smooth Regge-Wheeler potential.

Later that year, we published [7] in Physical Review D in
collaboration with Gabor Kunstatter (Physics, University of
Winnipeg), where we once again used the methods referenced
above to investigate a regular fourth dimensional black hole
(nonrotating, and without charge). Being a regular black hole,
the size of the central mass is measured by k, where k = 0 is the
singular Schwartzchild case [5]. We looked at the black hole in
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Figure 1: QNMs in the

real/(negative)imaginary-plane for
Schwartzchild (k=0) and regular BHs with
various k.

the presence of a scalar field and examined the QNMs generated
when the scalar field undergoes a perturbation, see Figures 1,2.



We found the QNMs had negative imaginary parts, which results in
damping (the amplitudes of the waves diminish over time). This
further implies the black hole will not gravitationally radiate away all
its mass, i.e., it is stable.

Currently, our team is putting the finishing touches on research into
the Reissner Nordstrom (RN) black hole (charged, but nonrotating
and singular). I have been producing QNMs for various amounts of
electric charge. We have produced QNMs not yet reported elsewhere

Figure 2: Gravity waveforms in the

time/displacement-plane for [1 1]-
Schwartzchild (k=0) and regular BHs
with various k. To find QNMs, one starts with a version of the wave equation which

models the gravity waves of the type of black hole you're studying. One then applies boundary conditions
to ensure that the gravity waves radiate only inward at the black hole event horizon, and only outward at
spatial infinity. Baber and Hasse [9] discovered the form of an ansatz (series solution) for this type of
problem, which is then adjusted to be consistent with the boundary condition requirements. Upon
substituting this ansatz, one then obtains an m-term recurrence relation: ay = 1, a-; = 0, cpa, +

C10p_1 + -+ Cm—1an_m—1 = 0, where the c; are functions of n, w; and the w are the (complex) QNMs
to be solved for.

The specifics of the recurrence relation are worked out for each black hole model. For Schwarzschild, one
finds a 3-term recurrence. This is good, because if m = 3, then Gautschi in [10] showed that for each
positive integer n, the desired solutions satisfy the continued fraction relation:

c,(n+2,w)

O=c(n+1,w) —co(n+1,w) RCEERD) (D

ci(n+2,0) —cp(n+2,w) ci(n+3,0) — -

And accuracy of the w roots is gained as the depth of the continued fraction increases.

However, my team observed that the more complicated black hole models generally have an m-term
recurrence relation, with m > 3. For example, we found a 4-term recurrence relation was generated when
evaluating a RN black hole. However, an m-term relation can be reduced to a 3-term relation using
Gaussian reduction. After this reduction, one can then apply the Baber and Hasse technique to find the
QNMs.

A difficulty with this process, however, is that the convergence for HQNMs occurs slowly, and
computation times become unreasonable. A technique to manage this was found by Nollert in [5]. It
involves generating an estimate for the tail end of the continued fraction.

I have observed that computational demands also increase as m increases. For the Gaussian reduction, the
size of the associated coefficient matrix may become quite large, in the hundreds or thousands of rows.
Calculations of this complexity cannot be done by hand and is instead done using Mathematica. Indeed, |
have made use of the supercomputer at the University of Minnesota in these computations.

Once the QNMs are calculated, we can consider stability. Stability in this context has to do with whether
the black hole will radiate away all of its mass upon being perturbed. In the ansatz solution used to solve
these equations, we always have a factor like e /", where r is the radius from the black hole.
Mathematically, to ensure this factor doesn't grow without bound as the wave moves away from the black



hole (taking the black hole's energy with it), observe we need the imaginary part of the w to be negative.
So, this becomes the criteria for stability.

Future Research

I have plans to expand my two-body problem research to include bodies

consisting of two dumbbells perpendicular to each other, connected along

their rods, a "pinwheel.” This way, each body is two-dimensional, instead of

the one-dimensional dumbbell. The end goal would be eventually to model

each body as a three-dimensional object, with three dumbbells connected

along their rods, a "jack.” This model would provide a lot of flexibility to

better approximate real-world objects (as you modify each body's six mass % %

parameters, and three rod length parameters).

Regarding gravitational waves, my colleagues and | are planning to study

other theoretical models for "regular” black holes, possibly using the Pinwheels and Jacks
approximation technique described in our earlier paper to produce gravitational waveforms and checking
for stability. In particular, we are next going to examine a regular charged black hole, and then expand on
this with a regular charged black hole which has some small rotation. Results from this research will help
to reveal which theoretical black hole models represent real black holes, and which models can be
eliminated.

I am lucky to have been able to pursue my childhood fascination. Not only have I had the chance to learn
about those motions in the night sky, but also to contribute to the scientific conversation. | look forward
to providing undergraduates with a similar opportunity. There are many extensions of my two-body
problem work that an undergraduate could pursue with my guidance. In addition, some of the research |
did as an undergraduate into automobile fossil fuel consumption and electoral voting systems could be
updated and extended by an undergraduate researcher. | look forward to making these opportunities
available.
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