MATH 1271: Calculus I

Discussion Instructor: Jodin Morey

moreyjc@umn.edu

Website: math.umn.edu/~moreyjc

3.4 - Chain Rule

Review

The Chain Rule: If g is differentiable at x and f is differentiable at g(x), then the composite function F(x) := f(g(x)) is differentiable at x and f' is given by the product $F'(x) = (f(g))' = f'(g(x)) \cdot g'(x)$.

For example let $f := \sin(x)$ and $g := x^2$. Then $F = f(g) = \sin(x^2)$ and $F' = f'(g(x)) \cdot g'(x) = \cos(x^2) \cdot (2x)$.

Derivative in Leibniz notation: $\frac{dF}{dx} = \frac{df(g(x))}{dx} = \frac{df(g(x))}{dg} \frac{dg}{dx}$.

Alternate notation: $F = f \circ g$.

Power Rule Combined with the Chain Rule: If n is any real number and u = g(x) is differentiable, then $\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$. Alternative notation: $\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$.

Problem 17. Find the derivative of $f(x) = (x^2 + x + 1)^5 (2x - 3)^4$.

We think of $g := x^2 + x + 1$ and h := 2x - 3, so that $f = g^5 h^4$.

By product and chain rule, we have:

$$f' = (g^5)'h^4 + g^5(h^4)' = (5g^4 \cdot g')h^4 + g^5(4h^3 \cdot h')$$

$$= 5(x^2 + x + 1)^4 (2x + 1)(2x - 3)^4 + (x^2 + x + 1)^5 \cdot 4(2x - 3)^3 \cdot 2$$

$$= 5(x^2 + x + 1)^4 (2x + 1)(2x - 3)^4 + 8(x^2 + x + 1)^5 (2x - 3)^3$$
 (you could stop here)

$$= (2x-3)^3(x^2+x+1)^4[5(2x-3)(2x+1)+8(x^2+x+1)]$$

$$= (2x-3)^3(x^2+x+1)^4(20x^2-20-15+8x^2+8x+8)$$

$$= (2x-3)^3(x^2+x+1)^4(28x^2-12x-7).$$

Problem 31. Find the derivative of $y = \sin(\tan 2x)$.

Let $u = \tan 2x$. Therefore, $y = \sin u$. Note: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$.

$$\frac{dy}{dx} = \cos u \cdot \frac{d}{dx} (\tan 2x)$$

$$= \cos(\tan 2x) \cdot \sec^2(2x) \cdot \frac{d}{dx} (2x)$$

$$= 2\cos(\tan 2x) \sec^2(2x).$$

So we actually had y = f(u(v)), where $f = \sin(x)$, $u = \tan(x)$, and v = 2x. (double chain rule!)

Problem 39. Find the derivative of $f(t) = \tan(e^t) + e^{\tan t}$.

$$y' = \sec^{2}(e^{t}) \cdot \frac{d}{dt}(e^{t}) + e^{\tan t} \cdot \frac{d}{dt}(\tan t)$$

$$= \sec^{2}(e^{t}) \cdot e^{t} + e^{\tan t} \cdot \sec^{2}(t)$$

$$= e^{t} \sec^{2}(e^{t}) + e^{\tan t} \sec^{2}(t)$$

Problem 47. Find y' and y'' of $y = \cos(x^2)$.

$$y' = -\sin(x^2) \cdot 2x = -2x\sin(x^2)$$

 $= -2 \sin(x^2) - 4x^2 \cos(x^2).$

$$y'' = (-2)\sin(x^2) - 2x\cos(x^2) \cdot 2x$$
 (product and chain rule!)

Problem 53. Find an equation of the tangent line to $y = \sin(\sin x)$ at the point $(\pi, 0)$.

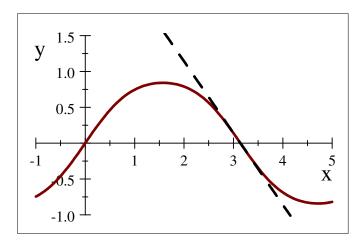
$$y' = \cos(\sin x) \cdot \cos x$$
.

At
$$(\pi,0)$$
, $y' = \cos(\sin \pi) \cdot \cos \pi$

$$= \cos(0) \cdot (-1) = 1(-1) = -1.$$

And an equation of the tangent line is

$$y - 0 = -1(x - \pi)$$
, or $y = -x + \pi$.



$$\sin(\sin x)$$
 and $y = -x + \pi$

Problem 73. If F(x) = f(3f(4f(x))), where f(0) = 0 and f'(0) = 2, find F'(0).

$$F' = f'(3f(4f)) \cdot \frac{d}{dx}(3f(4f)) = f'(3f(4f)) \cdot 3f'(4f) \cdot \frac{d}{dx}(4f)$$

$$= f'(3f(4f)) \cdot 3f'(4f) \cdot 4f', \text{ so...}$$

$$F'(0) = f'(3f(4f(0))) \cdot 3f'(4f(0)) \cdot 4f'(0)$$

$$= f'(3f(4 \cdot 0)) \cdot 3f'(4 \cdot 0) \cdot 4 \cdot 2 = f'(3 \cdot 0) \cdot 3 \cdot 2 \cdot 4 \cdot 2$$

Problem 78. Find the 1,000th derivative of $f(x) = xe^{-x}$.

$$f' = e^{-x} - xe^{-x} = (1 - x)e^{-x},$$

$$f'' = -e^{-x} + (1-x)(-e^{-x}) = (x-2)e^{-x}.$$

Similarly,
$$f''' = (3 - x)e^{-x}$$
,

$$f^{(4)} = (x-4)e^{-x}, \dots, f^{(1,000)} = (x-1000)e^{-x}.$$