MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey = moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

7.3: The Eigenvalue Method for Linear Systems

Finding the general solution to a homogeneous linear first-order system 7 = A7 with real coefficients, or equivalently:

/

X = anxy +apxy +...+a1.xn,
/

Xy ari X1 +ax»xy +...+aXxy,

/
X, = Au1X1 + apX2 ... +aupXy.

Eigenvalue Solutions of 7 = A7 Theorem: If 1 is an eigenvalue of the constant coefficient matrix A,

and if V' is an eigenvector associated with A, then the vector function Z(t) = Ve™, is a nontrivial solution

—_
to the system. (the trivial solution is Z(¢) = 0)

Proof: By theorem from previous section, it suffices to find n linearly independent solution vectors Z 1, ..., Z n,
and place them in a linear combination. But how to find these vectors?

Recall the educated guess when solving individual homogeneous linear DEQs: x(#) = ¢’. But this isn’t a vector.

Vi vieM
At
=4 oA Va At vae
So how about 7 (1) = Ve = ] et = ) , for some constants A, v;.
Vn Vaer

Note that 7' = AVe.

. / . .
To be a solution, we need 7 = A7Z, or substituting from above, AVe* = AVe?,

and canceling e* from both sides gives us AV = AV.

-
You may recall that when vV # 0, then the above equation is the requirement for having an

eigenvalue, eigenvector pair (/1,7) of A. [ |

Steps to a Solution for 7 = AZ.

¢ Solve the characteristic equation |A — AIl = O for the eigenvalues 4; of A.

¢ Attempt to find 7 linearly independent eigenvectors V; from the 1;,

each pair {1;,V;} gives you a linearly independent solution 7;(f) = V,e".

¢ If n such vectors are found, then: Z(f) = c1Z1(f) + c2Z2(t) +...+c, 2 ().



In general, to verify independence of solutions, check if the Wronskian |71e11’ ... Vae™!| is nonzero.

Steps for Complex Eigenvalues A € C (which come in conjugate pairs):

At

¢ Form the complex solution Z () = V,;e* associated either A or A (doesn’t matter which).

This involves a complex A and complex V;.
¢ Notationally manipulate Z(¢) into the form 7(t) +ig (1) to identify the real and imaginary parts (see examples of this below)

¢ Once you have found these two solutions (7(t) and g(£)), you are done.

The solutions associated with the eigenvalue’s conjugate 4 are identical.
As an exercise, verify that the solutions obtained from each conjugate 1,1 are identical.

See the examples below to get a better feel for what this section is saying.

Exercises ﬂ

Problem: #12 Apply the eigenvalue method of this section to find a general solution of the given system:

Xy =x1-5x2, X, =2Xx1+3x.

-A =5

=(1-M)B-A)+5=212-41+8.
33 ( )( )

1
Characteristic Equation: |A — A/l = ‘

4+£J16-32
A= e

Eigenvalues: 1 = 2 + 2i.

Eigenvector Equation (for 2 + 2i):

1-(2+2i) -5 1-2i -5 1 1-2i
= =
1 3-(2+2i) 1 1-2i “1-2i -5
b= b b(1 - 2i)
= , y=>b, x=-b(1-2i
0 0

Eigenvector: ¥ = [ —b(1-2i) b ]T - 1-2i -1 ]T, when b = —1.



So we have: Ve®?)"  (from above, "Notationally manipulate into the form f(¢) + ig(£)")

— eZteZit 1-2i
-1

1-2i 2+ isin20)(1 - 2i
= e%(cos2t + i sin2r) S Y (cos i sin2¢)( i) |
-1 —cos2t — i sin2t

Expanding the parentheses:

o | (cos2t+isin2s) —2i(cos2s+ i sin2i) :|
=e

—Ccos2t—isin2t

2t

Il
Q

—cos2t —isin2t

CcoS2t +isin2t — 2icos 2t + 2sin 2t :|

Collecting the imaginary parts:

5| cos2r+2sin2t +i(sin2t — 2cos2r)
e .
—cos2t —isin2t

Separating the imaginary part from the real part (f(¢) + ig(?)):
) cos2t + 2sin2¢ . sin2¢ — 2 cos 2t
= e + ie? .
—cos2t —sin2¢
We only need real linearly independent solutions, so:

Ccos2t + 2sin 2t sin2t — 2cos 2t
Z(t) = cre® + cre? )
—cos 2t —sin 2t

Or, with alternate notation:
x1(t) = e¥[c1(cos2t + 2sin2t) + c2(sin2t — 2cos 2t) ]
= e?[(c1 — 2¢2) cos2t + (2c¢1 + c2) sin 2t]

x2(t) = e¥(—c1cos2t — cysin2t).

The image below shows a direction field for this DEQ and some typical solution curves:



Problem: #25 Apply the eigenvalue method to find a general solution of the system.

x| = 5x1 + 5xp + 2x3, X5 = —6x1 — 6x2 — 5x3, x5y = 6x1 + 6x2 + 5x3

5 5 2
A=| -6 -6 -5
6 6 5

Characteristic equation: —1° + 412 — 131 = 0

Eigenvalues: A = O and 2 £ 3i

With 4 = 0 the eigenvector equation

55 2 0 .
-6 -6 -5 |[Vi=] 0 |giveseigenvector v, =|: 1 -1 0 :| .
6 6 5 0
=4 _ = Ot _ B T
So: Zi(®) =vie”" = 1 -1 0 :| .

With 4 = 2 + 3i we solve the eigenvector equation

3-3i 5 2 0
-6 -8-3i -5 Vo=1| 0
6 6 3-3i 0

T
To find the complex valued eigenvector V5 = |: 1+i -2 2 :| .

The corresponding complex-valued solution is

1+i 1+
V@30t = g2t _o = e¥(cos3t+isin3t)| -2

2 2



(cos 3t + isin3t) + i(cos 3t + isin 3t) cos 3t —sin3z + icos3t — isin 3¢

2t 2t

=e —2cos 3t — 2isin 3t =e —2cos 3t — 2isin 3t
2cos 3t + 2isin 3¢ 2cos 3¢+ 2isin 3¢
We are only interested in the real values, so:
cos 3t — sin 3¢ cos 3t — sin 3¢
Z2(8) + Z3(f) = c2e® —2cos3t + c3e? —2sin3t
2cos 3t 28in 3t

Finally, we add the three solutions, with arbitrary constants.

So: ?(l‘) = Cl?l(l‘) + Cz?z(l‘) + C3?3 (t)

1 cos 3t — sin 3¢ cos 3t — sin 3¢
=ci| -1 +cre? —2cos 3t +cze? —25sin3t
0 2cos3t 2sin 3¢

The scalar components of the above general solution are:
x1(t) = c1 +e¥[(c2 + c3)cos3t— (ca + c¢3) sin 3¢],
x2(t) = —c1 + 2e*(—ccos 3t — c3sin3¢),

x3(f) = 2e%(cycos3t + c3sin3t).

Finding the complex eigenvector from the previous problem:

5 5 2
A= -6 -6 -5 Eigenvalues: 4 = 0 and 2 + 3i.
6 6 5

With 4 = 2 + 3i we solve the eigenvector equation...

5-(2+3i) 5 2 3-3i 5 2
-6 —6— (2 +3i) -5 = -6 -8-3i -5
6 6 5-(2+3i) 6 6 3-3i
6 6 3-3i 1 1 L-L
= 6 -8-3i -5 = 0 -2-3i —2-3i
3-3i 5 2 3-3i 5 2



11 %—%l 10 —%—%z
= 01 = 01 1
00 0 00 0
zZ=c, y =—c, X=5+5i
5+ 5l I+1i
—C = -2 where ¢ = 2.
c 2

T
Complex valued eigenvector: V5 =[ I+i -2 2 ] .

Problem: #34 ‘?’z;(_%ul/min)

il
This problem deals with the open three tank system. Freshwater flows into tank-1.
Mixed brine (salt water) flows from tank-1 into tank-2, from tank-2 into tank-3, and out of tank-3.
All have the flow rate r = 60 gallons per minute. Initial (# = 0) amounts of salt are:

x1(0) =40 Ib, x,(0) =0, and x3(0) = 0 in the three tanks.
Initial volumes: V; =20, V, =12, V3 = 60.

a.) First, solve for the amounts of salt in the three tanks at time .

Observe that: x; = [IN; Salt] — [OUT; Salt]

= [In-Concentration; x In-Flow;] — [Out-Concentration; x Out-Flow;]
So, x| = [0x 60] — [55 x 60] = =3x;.

Similarly: x5 = 3x; —5x2, and x5 = 5x2 — x3.



xl _3xl

And, 2 =| % | =] 3x-50
x4 Sx2 —x3
-3 0 O X1
= 3 =50 X2 | =A7Z.
0 5 -1 X3
-3 0 O
The coefficient matrix A = 3 50 has as eigenvalues, its diagonal elements:
0 5 -1
A1 = -3, A, = -5, and A3 = —1 (as with any triangular matrix).

We find that the associated eigenvectors are:
T
Vi-] 4 615 ], Va=[0 45|

T, and%:[ 001 T.

So: ? = V1€_3t + 726_5t + V3€_t.
Or written as a system:

x1(t) = —4C1€_3t

x2(t) = —6c1e7 — 4cre™!

x3(t) = 15c1e™¥ + 5ce™ + c3e¢”.  Now What?

The initial conditions x;(0) = 40, x2(0) = 0, and x3(0) = 0 giveus ¢; = —10, ¢, = 15, ¢3 = 75. So we have:
x1(t) = 40e=3
x2(1) = 60e~3 — 60~
x3(t) = —150e7" + 75¢7" + 75¢~".

b.) Now, determine the maximal amount of salt that tank-3 ever contains.

Remember from calculus that you can find the local maximums and minimums by taking the derivative of the function, and
setting it equal to zero. For tank-3:

x5(t) = 4507 — 375¢5 - 75¢7 = 0

Multiplying by nonzero

5¢#% —6e2+1=0  Factoring this is the (not so) hard part.

(e —1)(e-1)=0



And observe that for the second factor: e = 1 when In(e ) = In(1),

or equivalently when —2¢ = 0, or ¢ = 0.

Now looking at the first factor, e = + when In(e™) = In(1),

or when -2t = —In5, ort = +1n5 ~ 0.8 min = 48sec.
Since x3(¢) = —150e7 + 75¢™" + 75¢~", the maximum amount of salt ever in tank-3 is x3 (% ln5> ~ 21.5 pounds,

c.) Finally, construct a figure showing the graphs of x;(¢), x,(¢), and x3(¢).
The figure below shows the graph of x;(¢), x2(¢), and x3().
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