MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey = moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

5.4 Mechanical Vibrations

Amplitude

Mass, Spring, Damper Model

Mechanical Vibrations are modeled by the DEQ: Fr = Fg+ F4 + F.(t), where
Fr = mx" represents the total force on an object.
F, = —cx' represents the damping force, F's = —kx represents the spring force,
and F.(t) represents any external force.

So our DEQ becomes: mx" = —kx — cx' + F.(2).
Rewriting in normal form gives: x" + Sx' + £x = LF,(9) (it’s non-homogenous!).

When F, = 0, we say the DEQ is free, otherwise, we refer to it as being forced.

Simple Pendulum

Label the counterclockwise angle the pendulum makes with the vertical as function of time: 0(z).

To determine the DEQs of a physical system, very frequently

we start with a conservation law, then derive the DEQs.

Conservation of Mechanical Energy: T+ V = C,

where 7, V is kinetic and potential energy, and C is some constant.

L2,

Let’s calculate kinetic energy: T = -



For this we will need a distance/position function s(z).

Circumference of a circle 2zr = 2xL.

Therefore, distance along arc from vertical is s = L6.

s ds _ dWO) gy S I S | ds N2 _ 1,72/ d0 2
Velocity is 9+ = == = L0 and T = -mv* = 7m<7j> = 5 mL <7> .
Now let’s calculate potential energy mgh.

To determine height, we need to know length of the triangle side opposite the mass.

Observe cos = -+ = -, where a is the side length of interest.

W
So,a =Lcos@and h = L—LcosO = L(1 — cos@).

2
Therefore, T+ V = 1mL2(4L )" + L(1 - cosf) = C.

Taking the derivative with respect to #:

mL2<fl—?> (%) +mgL sin@fl—? =0,

. . de
and making the very reasonable assumption that <=,m,L + 0

(pendulum is moving, as a nonzero mass and length), we divide to get:

20 8 Gng =
‘m + o sinf = 0.

In real situations there is friction c0' due to air resistance on m and at the connection where the string is fixed. Also, in many
applications, we are most interested in this system when the pendulum is moving only slightly. In such situations, 6 ~ sin6.
This is an approximation, but making this substitution makes the analysis much simpler. So we get:

0" +ct' + k0 = 0, where k = &.
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Free Undamped Motion: mx" + kx = 0. (homogenous)

Normal form:

rad
sec *

wy = /L = x" + w}x = 0, where wo is the circular frequency in

Using our skills from previous section, 7>+ 3 = 0 when r = * /-0} = tio.
e’ = coswot + i sinwot.

The Gen. Solution is: x(f) = A coswot + Bsinwot.

We wish to alter the solution x(7) to make it simpler.

We want: x(¢) = Ccos(wot — a),



where C turns out to be the amplitude of the vibration!

So, let A and B be the legs of a right triangle, then the hypotenus: C = JA? + B2 .

B
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With angle a (opposite of B), recall we have: cosa = %, sina = %,
tan~' £ if A,B > 0 (1st quadrant),
where a = m+tan~' L if A < 0 (2nd/3rd quadrant),

A
27 +tan™' £ if A > 0,B < 0 (4th quadrant).

Then, x(f) = Acoswot + Bsinwot = C(% cos wot + % sin a)ot>

= C(cosacoswot + sin o sinwot).
Recall the Trigonometric Identity: cosx cosy+ siny sinx = cos(x —y) = cos(y — x).

So, x(t) = Ccos(wot — a), where C is the amplitude,

sec

wo is the circular frequency in 24, and « is the phase angle.

. . . ycles
Period of Motion: T = 2= sec. Frequency: v = - = 2% in 52~

Free Damped Motion: x" + <x' + £x =0

= x"+2px' + 0jx = 0, where p := = > 0.

—2p [ap? 402
rP+2pr+w}=0 => r=——">-=-—p+ [p’>-w}.

2

The nature of the roots depend upon the sign of: p> — 0§ = 4‘;2 -k = %.
Three situations: c > J4km, c = J4km, c < J4km .

Critical Damping ¢ = 4km .
¢ Overdamped Case: ¢ > c,,. x(t) = c1e"" + ce™, where ry,r; < 0.
¢ Critically Damped Case: ¢ = c,,. x(t) = e (c1 + cat).

¢ Underdamped Case: ¢ < c,.



x(t) = e (Acoswit + Bsinwt), where @ =

Jwj — p* (damped circ.

freq.)

Alternatively: Ce ™' cos(w17 — ), (where C = yA? + B*, cosa = 4, sina = £).

STRONG DAMPING

displacement

x=

W T\

Underdamped

Notice that in all three cases, x(f) —» 0 as t > +co.

Q)

Underdamped

&

Overdamp

t= time
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Exercises ﬁ

Problem: ~#17a

A mass m = 81 is attached to both a spring with spring constant k¥ = 4, and a dashpot with damping

constant ¢ = 36. Find the position function x(¢) and determine whether the motion is overdamped, underdamped, or critically

damped.

mx" +cx' +kx = 0,

81x" +36x +4x =0

To determine which equation to use: ¢, = J4km = J4 .4 .81 =4.9 = 36.

And we see that ¢ = 36 = ¢, SO ...

So we are in the critically damped case:

x(t) = e™'(cy + cat).



forci =1landc, = -2

Problem: ~#17b A mass m = 1 is attached to both a spring with spring constant k = 9, and a dashpot with damping constant
¢ = 8. Find the position function x(#) and determine whether the motion is overdamped, underdamped, or critically damped.

mx" +cx' +kx = 0, xX"+8x' +9x =0

To determine which equation to use: c., = J4km = J4-:9.1 =6 <8 =c.
And we see that c = 8 > ¢, SO ...

So we are in the over-damped case: x(f) = c;x" + cox™.

P2 +8r+9 o p= SO ‘624_4'9: -4+ /7.

x(t) = c1eCHIT ey (4T
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forci =1landc, = -2

‘Equilibrium
position
Problem: #23 This problem deals with a highly simplified model of a car weighing 3,200 pounds (mass m = 100 slugs in

Jps units). Assume that the suspension system acts like a single spring, and its shock absorbers (if connected) act like a single
dashpot, so that its vertical vibrations (over a smooth flat road) satisfy: mx" + cx’ + kx = 0.

a) Find the stiffness coefficient k of the spring if the car undergoes free vibrations (v) of 80 cycles per minute when its shock
absorbers are disconnected.

Shock absorbers disconnected?  mx” +kx = 0.  How to find k?
With m = 100 slugs we get: wo = [ 155 X"+ wjx = 0.

“cycles per minute" is frequency (v), but we need to convert this into g
which is circular frequency in units of 244

80 cycles 1 min (27[) _ 8m ra

o = =37 e

1 min 60 sec

So. % = 5. g = () k=S92 <7018 i

b) With the shock absorbers connected, the car is initially set into vibration by driving it over a bump, and the resulting
damped vibrations have a frequency of 78 cycles per minute.

After how long will the time-varying amplitude be 1% of its initial value?



Which equation will we be working with?

Since there are vibrations ...

We are not in the overdamped/critically damped cases. We are dealing with the underdamped case.

The gen. solution for this case is : x(f) = Ce™" cos(wt — a), where 01 = Jw} —p?.

"After how long will the time-varying amplitude be 1% of its initial value?"

When does Ce™ = 0.01Ce™?% ? The initial time value is g = 0, becomes: e = 0.01.

B _ In(0.01)
= —pt=1n(0.01) > = ——.
: - ¢ _ _c
So, we must first solve for p, where p = > 500
Which means we first must solve for c.
o) = Joi—-p?
_ |k _ 2 dkm—c> _ A4km=c?
T m am? am? 2m
J2.807,200—¢2
~ 200 :
Which means we first must solve for @ !!!
) . 78 cycle 78 cycles 1 mi 78 cycles
However, we are given that the damped frequency v is: ——— or ——— 0 = 2970
1 min 1 min 60 sec 60 sec

. . 78 cycles ( 2m rad
So, the damped circular frequency o is: ——— ( T

) ~ 8.1681 radsec.
60 sec

1 cycle

So, B0 _ g 1681, /28072002 = 1633.6

200
2807200 — ¢? = 2668648.96, c? = 2807200 — 2668648.96 = 138551.04

¢ = {138551.04 ~ 372.22 Ib/(ft/ sec).

Hence: p = 5% = 222 ~ 1.8611.

_ 1001 1n(0.01)

- ~ Trseg ~ 2-47 sec. (whew!)




And plugging in our calculations for p and @;, we have: x(f) ~ Ce "3 cos(8.17t — a).

1.0
X
0.5
0.0 =
2 24
t
05—+
a=0and C=1
For the 3rd Midterm/Final exam, a less complicated task you should be able to check is whether a damping constant would result
in overdamped, underdamped, or critically damped vibrations. You do this by comparing your damping constant ¢ to y4km . Inthe
above case, ¢ = 372.22 and J4km = /4 -7018 - 100 ~ 1676. Therefore ¢ < J4km and the vibrations are underdamped, as we
surmised earlier.
Problem: #33 The local maxima and minima of x(#) = Ce™" cos(wt — a), occur where: tan(wf—a) = —le.
Consecutive maxima occur at times x; = x(¢;) and x, = x(2). Assume: t, — 1] = &

] *
2np

Deduce that: In - =

(recall thatp = 5>).

If x; = x(#;) and x, = x(z2) are two successive local maxima, then...
cos(mit, —a) = cos(@wit; — Q)
oith—a=wit—a+2r, and w1t = @1t +27 S0 ...

x; = Ce™ cos(mit; — ),

xy = Ce™P2cos(wit, —a) = Ce?2 cos((wt) +2m) —a) = Ce™P2 cos(wit) — a)

Hence. 2L — Ce™1 cos(wt1—a)

— ,—plt1—t
, = _eP(lz),

Ce™2 cos(wt1—a)

d [ T 2m,
and therefore, In(5-) = —p(t1 — 12) = —<%>(§)—1 = 2

o] *



