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5.4 Mechanical Vibrations

Mass, Spring, Damper Model

Mechanical Vibrations are modeled by the DEQ: FT � FS � Fd � Fe�t�, where

FT � mx �� represents the total force on an object.

Fd � �cx � represents the damping force, FS � �kx represents the spring force,

and Fe�t� represents any external force.

So our DEQ becomes: mx �� � �kx � cx � � Fe�t�.

Rewriting in normal form gives: x �� � c
m x � � k

m x � 1
m Fe�t� (it’s non-homogenous!).

When Fe � 0, we say the DEQ is free, otherwise, we refer to it as being forced.

Simple Pendulum

Label the counterclockwise angle the pendulum makes with the vertical as function of time: ��t�.

To determine the DEQs of a physical system, very frequently

we start with a conservation law, then derive the DEQs.

Conservation of Mechanical Energy: T � V � C,

where T,V is kinetic and potential energy, and C is some constant.

Let’s calculate kinetic energy: T � 1
2

mv2.



For this we will need a distance/position function s�t�.

Circumference of a circle 2�r � 2�L.

Therefore, distance along arc from vertical is s � L�.

Velocity is ds

dt
�

d�L��
dt

� L�� and T � 1
2

mv2 � 1
2

m ds

dt

2
� 1

2
mL2 d�

dt

2
.

Now let’s calculate potential energy mgh.

To determine height, we need to know length of the triangle side opposite the mass.

Observe cos� � a

h
� a

L
, where a is the side length of interest.

So, a � L cos� and h � L � L cos� � L�1 � cos��.

Therefore, T � V � 1
2

mL2 d�
dt

2
� L�1 � cos�� � C.

Taking the derivative with respect to t:

mL2 d�
dt

d2�

dt2
� mgL sin� d�

dt
� 0,

and making the very reasonable assumption that d�
dt

, m, L � 0

(pendulum is moving, as a nonzero mass and length), we divide to get:

d2�

dt2
�

g

L
sin� � 0.

In real situations there is friction c�� due to air resistance on m and at the connection where the string is fixed. Also, in many

applications, we are most interested in this system when the pendulum is moving only slightly. In such situations, � � sin�.

This is an approximation, but making this substitution makes the analysis much simpler. So we get:

��� � c�� � k� � 0, where k �
g

L
.

Free Undamped Motion: mx �� � kx � 0. (homogenous)

Normal form:

�0 :� k
m � x �� � �0

2x � 0, where �0 is the circular frequency in rad
sec .

Using our skills from previous section, r2 � �0
2 � 0 when r � � ��0

2 � �i�0.

e i�0t � cos�0t � i sin�0t.

The Gen. Solution is: x�t� � A cos�0t � B sin�0t.

We wish to alter the solution x�t� to make it simpler.

We want: x�t� � C cos��0t � ��,



where C turns out to be the amplitude of the vibration!

So, let A and B be the legs of a right triangle, then the hypotenus: C � A2 � B2 .

With angle � (opposite of B), recall we have: cos� � A
C

, sin� � B
C

,

where � �

tan�1 B
A

if A, B � 0 (1st quadrant),

� � tan�1 B
A

if A � 0 (2nd/3rd quadrant),

2� � tan�1 B
A

if A � 0, B � 0 (4th quadrant).

Then, x�t� � A cos�0t � B sin�0t � C A
C

cos�0t � B
C

sin�0t

� C�cos�cos�0t � sin� sin�0t�.

Recall the Trigonometric Identity: cosx cosy � sin y sin x � cos�x � y� � cos�y � x�.

So, x�t� � C cos��0t � ��, where C is the amplitude,

�0 is the circular frequency in rad
sec , and � is the phase angle.

Period of Motion: T � 2�
�0

sec. Frequency: v � 1
T

�
�0

2�
in

cycles
sec .

Free Damped Motion: x �� � c
m x � � k

m x � 0

� x �� � 2px � � �0
2x � 0, where p :� c

2m
� 0.

r2 � 2pr � �0
2 � 0 � r �

�2p� 4p2�4�0
2

2
� �p � p2 � �0

2 .

The nature of the roots depend upon the sign of: p2 � �0
2 � c2

4m2
� k

m � c2�4km

4m2
.

Three situations: c � 4km , c � 4km , c � 4km .

Critical Damping ccr � 4km .

� Overdamped Case: c � ccr. x�t� � c1er1t � c2er2t, where r1, r2 � 0.

� Critically Damped Case: c � ccr. x�t� � e�pt�c1 � c2t�.

� Underdamped Case: c � ccr.



x�t� � e�pt�A cos�1t � B sin�1t�, where �1 :� �0
2 � p2 (damped circ. freq.)

Alternatively: Ce�pt cos��1t � ��, (where C � A2 � B2 , cos� � A
C

, sin� � B
C

).

Notice that in all three cases, x�t� � 0 as t � ��.

Underdamped Overdamped

Exercises

Problem: ~#17a A mass m � 81 is attached to both a spring with spring constant k � 4, and a dashpot with damping

constant c � 36. Find the position function x�t� and determine whether the motion is overdamped, underdamped, or critically

damped.

mx �� � cx � � kx � 0, 81x �� � 36x � � 4x � 0

To determine which equation to use: ccr � 4km � 4 � 4 � 81 � 4 � 9 � 36.

And we see that c � 36 � ccr, so 	

So we are in the critically damped case: x�t� � e�pt�c1 � c2t�.

p � c
2m

� 36
2�81

� 2
9

.

x�t� � e� 2
9

t�c1 � c2t�.
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Problem: ~#17b A mass m � 1 is attached to both a spring with spring constant k � 9, and a dashpot with damping constant

c � 8. Find the position function x�t� and determine whether the motion is overdamped, underdamped, or critically damped.

mx �� � cx � � kx � 0, x �� � 8x � � 9x � 0

To determine which equation to use: ccr � 4km � 4 � 9 � 1 � 6 � 8 � c.

And we see that c � 8 � ccr, so 	

So we are in the over-damped case: x�t� � c1xr1t � c2xr2t.

r2 � 8r � 9 � r �
�8� 64�4�9

2
� � 4 � 7 .

x�t� � c1e �4� 7 t � c2e �4� 7 t
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Problem: #23 This problem deals with a highly simplified model of a car weighing 3, 200 pounds (mass m � 100 slugs in

fps units). Assume that the suspension system acts like a single spring, and its shock absorbers (if connected) act like a single

dashpot, so that its vertical vibrations (over a smooth flat road) satisfy: mx �� � cx � � kx � 0.

a) Find the stiffness coefficient k of the spring if the car undergoes free vibrations (v) of 80 cycles per minute when its shock

absorbers are disconnected.

Shock absorbers disconnected? mx �� � kx � 0. How to find k?

With m � 100 slugs we get: �0 � k
100

, x �� � �0
2x � 0.

“cycles per minute" is frequency (v), but we need to convert this into �0

which is circular frequency in units of rad
s .

�0 �
80 cycles

1 min

1 min

60 sec
�2�� � 8�

3
rad

s .

So, 8�
3

� k
100

, k
100

� 8�
3

2
, k � 6400�2

9
� 7, 018 lb/ft.

b) With the shock absorbers connected, the car is initially set into vibration by driving it over a bump, and the resulting

damped vibrations have a frequency of 78 cycles per minute.

After how long will the time-varying amplitude be 1% of its initial value?



Which equation will we be working with?

Since there are vibrations ...

We are not in the overdamped/critically damped cases. We are dealing with the underdamped case.

The gen. solution for this case is : x�t� � Ce�pt cos��1t � ��, where �1 � �0
2 � p2 .

"After how long will the time-varying amplitude be 1% of its initial value?"

When does Ce�pt � 0. 01Ce�p� t0 ? The initial time value is t0 � 0, becomes: e�pt � 0. 01.

� � pt � ln�0. 01� � t �
ln�0.01�

�p .

So, we must first solve for p, where p � c
2m

� c
200

.

Which means we first must solve for c.

�1 � �0
2 � p2

� k
m � c2

4m2
� 4km�c2

4m2
�

4km�c2

2m

�
2,807,200�c2

200
.

Which means we first must solve for �1!!!

However, we are given that the damped frequency v is:
78 cycles

1 min
or

78 cycles

1 min

1 min

60 sec
�

78 cycles

60 sec
.

So, the damped circular frequency �1 is:
78 cycles

60 sec

2� rad

1 cycle
� 8. 1681 rad/ sec.

So,
2807 200�c2

200
� 8. 1681, 2807 200 � c2 � 1633. 6

2807 200 � c2 � 2668648. 96, c2 � 2807 200 � 2668648. 96 � 138551. 04

c � 138551. 04 � 372. 22 lb/�ft/ sec�.

Hence: p � c
2m

� 372. 22
200

� 1. 8611.

t �
ln�0.01�

�p �
ln�0.01�
�1. 8611

� 2. 47 sec. (whew!)



And plugging in our calculations for p and �1, we have: x�t� � Ce�1. 86t cos�8. 17t � ��.
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For the 3rd Midterm/Final exam, a less complicated task you should be able to check is whether a damping constant would result

in overdamped, underdamped, or critically damped vibrations. You do this by comparing your damping constant c to 4km . In the
above case, c � 372. 22 and 4km � 4 � 7018 � 100 � 1676. Therefore c � 4km and the vibrations are underdamped, as we
surmised earlier.

Problem: #33 The local maxima and minima of x�t� � Ce�pt cos��1t � ��, occur where: tan��1t � �� � �
p
�1

.

Consecutive maxima occur at times x1 � x�t1� and x2 � x�t2�. Assume: t2 � t1 � 2�
�1

.

Deduce that: ln
x1

x2
�

2�p
�1

(recall that p � c
2m

).

If x1 � x�t1� and x2 � x�t2� are two successive local maxima, then...

cos��1t2 � �� � cos��1t1 � ��

�1t2 � � � �1t1 � � � 2�, and �1t2 � �1t1 � 2� so 	

x1 � C e�pt1 cos��1t1 � ��,

x2 � C e�pt2 cos��1t2 � �� � C e�pt2 cos���1t1 � 2�� � �� � C e�pt2 cos��1t1 � ��

Hence,
x1

x2
�

C e�pt1 cos��1t1���

C e�pt2 cos��1t1���
� e�p�t1�t2 �,

and therefore, ln� x1

x2
� � �p�t1 � t2� � � c

2m
� 2�
�1

� �
2�p
�1

.


