MATH 2243: Linear Algebra & Differential Equations

Instructor: Jodin Morey = moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

5.1: Second-Order Linear Equations:

Modeling the world with first-order DEQs y' + g(x)y = f(x) assumes a simple situation in which the coefficient in front of y" is
zero (and similarly with y"',y® etc.).

We have seen that solving a first order DEQ gives us a 1-dimensional family of solutions (e.g., y = Ce*). But if we assume a
more complicated scenario where the coefficient in front of y" is nonzero, we generate more solutions. Solving this 2nd order
DEQ (e.g., y" + p(x)y' + g(x)y = f(x)) gives us a 2-dimensional family of solutions (e.g., y = Ae* + Be™).

Linear DEQ: e*y" + cos(x)y’ + (1 + /x )y = tan™!(x)
Non-linear DEQ: y" +3(y')? +4y3 = 0
Non-homogenous: x>y + 2xy' + 3y = cosx,

which is associated with homogenous DEQ: x%y" + 2xy' + 3y = 0.
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Mass, Spring, Damper (see animation in class)

Hooke’s Law: F's = —kx, where k > 0 (Spring Force)

Fr=—-cv= —cd—;‘, where c > 0  (Resistance/Damping Force)
Newton: F = ma = m~“=-.

Therefore mi’i—j;‘ = Fs+ Fg, ormx”" +cx' +kx = 0.  (homogeneous model with damping)



External Periodic Force

mx" +cx' + kx = F(f)  (model which includes damping and nonhomogeneous external force)

More General Mathematical Treatment
ADx" +Bx' + C(H)x = F(t) or A(x)y" +B(x)y' + C(x)y = F(x).

Normal Form: y" + p(x)y’ + g(x)y = f(x), obtained if A(x) # 0 on the interval of interest.

Superposition of Homogeneous DEQ Solutions Theorem: If y;,y, are solutions to y" + p(x)y' + g(x)y = 0,
and ¢y, ¢, are constants, then y = ¢y + c2y» is also a solution.

This generalizes to nth order DEQs.

Proof: We are given that y| + p(x)y| + g(x)y; = 0 and y5 + p(x)y5 + g(x)y> = 0.

We must show that y" + p(x)y' + g(x)y = 0 when substituting in y = c1y1 + c2y>.

Observe y' = c1y| + ¢y, and y" = c1y| + c2y).

"

Substituting in: y" + p(x)y" + g(x)y = (c1y| + cayy) + p(x)(c1y| + c2y3) + g(x)(c1y1 + c2y2)

ciyy + cip()y| + c1g(x)y1 + cays + c2p(x)yy + c2g(x)y2

1] + p()y) + g(X)y1) + c2(yy + p(x)ys + g(x)y2)

=c1+04+¢-0=0. [ |

So solutions to homogeneous DEQs form a vector space.

Existence and Uniqueness for Linear DEQs Theorem: Given: y" + p1(x)y' + p2(x)y = f(x),
if at a point x = a the expressions p;(x), p2(x), and f(x) are continuous on some interval,
then there’s a unique solution to y" + p1(x)y' + p2(x)y = f(x) on that interval satisfying initial conditions:

y(a) = by, y'(a) = by, for any by, b; € R.



This generalizes to nth order DEQs.

Recall that each first order DEQ gave a unique solution for each point (a, b).

For the 2nd order DEQ above, note that if we choose initial condition y(a) = by, there is still an infinite number of solutions
based upon our choice of initial condition y'(a) = b;. Geometrically, this means that for every point in the plane, we can choose
any (finite) slope we want, and there will be a solution going through that point with that slope.

y"+3y'+2y = 0 with y(0) = 1, but different slopes

Recall that in R?, we needed two linearly independent vectors to span the vector space. Similarly, to span the solution set S of a
homogeneous second order DEQ, you need two linearly independent vectors, which in our case are functions yy,y».

And as with the vectors in R?, y;,y, are linearly independent if they are not constant multiples of each other.
v1 #+ ky, where k € R.

However, it’s not always clear cut whether two functions are constant multiples of each other.

Independence of Functions

Let’s develop the condition under which, given a DEQ y" + p1(x)y’ + p2(x)y = f(x), and any two solutions y,y, we can say that
the solution y = c¢1y; + c2y2 represents the general solution (spans the solutions space).

Well we know y,y> must be linearly independent, but how can we check this?

Recall that our existence theorem above for DEQ solutions suggests that if y IS our general solution, we should be able to
uniquely find any particular solution using any initial conditions y(a) = bo,y'(a) = b;. In other words, solve the system:

ciyi(@) +eaya(@) =bo yi(a) ya(a) 1 bo
c1yi(a) + c2ys(a) = by yi(a) ys(a) 2 b
Observe that we can solve for ¢y, ¢, uniquely if the determinant of the matrix is nonzero.

Further observe that for y to be the general solution, the determinant must be nonzero for every choice of a.

This suggests a method for identifying functions which are linearly independent.



Wronskian (denoted by: W):

. yi o y2
Given yi(x), y2(x) we denote W(x) = W(y1,y2) = = Yiyh = YiVa.
Yi ¥

This generalizes to n EQs with an n x n determinant with n — 1 derivatives.

Wronskian of Solutions Theorem: If y,y, are solutions to y” + p;(x)y’ + p2(x)y = 0 on an interval I where p,p; are
continuous, then:

¢ v,y are linearly dependent if and only if W(y,,y2) = 0, at each point x in /.
¢ y1,y2 are linearly independent if and only if W(y;,y2) # O at each point x in /.

For all other solutions y(x) to the homogeneous DEQ,

there exists c¢i,c2 € R such that: y(x) = c1y1(x) + c2y2(x) (general solution).

This generalizes to nth order DEQs with p1,...,p,, with n solutions yy,...,y,, and cy,...,c, € R.

General Solutions of Homogeneous DEQs Theorem: Let y;, y, be linearly independent solutions of y” + p(x)y’ + g(x)y = 0,
with p, g continuous on some interval /1. If Y is any solution whatsoever on /, then there exists ci,c2 € R such that
Y(x) = c1y1 + cay2, forall x on 1.

Proof: Choose a € I. Consider:

ciyi(a) + caya(a) = Y(a),
c1y(a) + cays(a) = Y'(a).

yi(@) y2(a) a | _| Y@
yi(a) yi(a) C2 Y'(a)

yi(x)  ya(x) : : : .
Observe: W(yi,y2) = # 0 (for all x, including x = a), since we have independence.

/
yi() ya(x)
So we can reduce the system to solve for ci,c2. Butdoes Y = c1y; + c2y for the rest of x € I?

Define G(x) := c1y1(x) + c2y2(x).
Observe that this solves the DEQ since it is a linear combination of solutions.

Recall that the uniqueness theorem tells us that solutions which satisfy

initial conditions y(a) = b; and y'(a) = b, are unique.

Note that G(a) = c1yi(a) + cay2(a) = Y(a).
and G'(a) = c1y!(a) + cays(a) = Y'(a).

So, since both G and Y satisfy the same initial conditions,



and are both solutions to the DEQ, Y(x) = G(x), on I.

And we have Y(x) = c1y; + c2y2, forall x on 1. [

2nd Order Homogeneous DEQs w/ Constant Coefficients

In general, it is difficult/impossible to solve 2nd order DEQs.

So let us simplify to linear 2nd order homogeneous DEQs with constant coefficients.
ay”" +by' +cy =0

To solve this, we need a y such that a linear combination of its derivatives is equal to y multiplied by
a constant (i.e., ay” + by’ = —cy).

Note if y := e™, then: y' = (¢™)' = re™ = ry. And y" = r?y.

This implies we might be able to make this type of substitution to find a solution, by solving for r.
ar’y +bry+cy =0
ar’*+br+c =0, fory # 0.

Characteristic Equation Algorithm: To solve ay” + by’ + cy = 0, replace y",y',y with r2,r, 1.
Then, algebraically solve the characteristic equation (ar? + br + ¢ = 0) for r.

¢ If solutions ry, r, are real & distinct, y(x) = c1e”* + c,e™* is the general solution to our DEQ,

and the solution space has basis {e”x, e’”}.

¢If r; = rp, then y(x) = c1e™* + coxe”™ is the general solution,
and the solution space has basis {e”x, xe”x}.

2

This generalizes to nth order DEQs with y(”), .y y and .t .

Exercises ﬁ)

Problem: #36  Find the general solution: 2y" +3y' = 0.
2r? +3r = 0.
r2r+3) = 0.

_ 3.
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y(x) =c1 + cre T,

Problem: #44  Given the general solution y(x) = cje'% + c2e7'™ of a homogeneous second order DEQ, find the DEQ in the
form ay" + by' + cy = 0 with constant coefficients.

(r—=10)(r+10) =0

r? —100 = 0.
y" =100y = 0.
Problem: #31 y1 = sinx? and y, = cosx? are linearly independent functions, but show that their Wronskian vanishes (is

equal to zero) at x = 0. Why does this imply that there is no differential equation having both y; and y, as (global) solutions, of
the form y" + p1(x)y' + p2(x)y = 0, with both p; and p; continuous everywhere?

sinx? cosx?
W(yi,y2) =

2xcosx? —2xsinx?

2 2,2

= —2x sin’x? — 2x cos’x
= —2x(sin’x? + cos?x?) = —2x.

—2x vanishes at x = 0.

"Why does this imply that there is no differential equation of the form y" + p;(x)y’ + p>(x)y = 0, with both p; and p,
continuous everywhere, having both y; and y, as global solutions?"

In order for y; and y, to be linearly independent solutions of the equation y” + p1y’ + poy = 0
(with p; and p, both continuous) on an open interval / containing x = 0,

the Wronskian of Solutions Theorem requires W # 0 on 1.



