
MATH 2243: Linear Algebra & Differential Equations
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5.1: Second-Order Linear Equations:

Modeling the world with first-order DEQs y � � q�x�y � f�x� assumes a simple situation in which the coefficient in front of y �� is

zero (and similarly with y ���, y�4�, etc.).

We have seen that solving a first order DEQ gives us a 1-dimensional family of solutions (e.g., y � Cex). But if we assume a

more complicated scenario where the coefficient in front of y �� is nonzero, we generate more solutions. Solving this 2nd order

DEQ (e.g., y �� � p�x�y � � q�x�y � f�x�) gives us a 2-dimensional family of solutions (e.g., y � Aex � Be�x).

Linear DEQ: exy �� � cos�x�y � � �1 � x �y � tan�1�x�

Non-linear DEQ: y �� � 3�y ��2
� 4y3 � 0

Non-homogenous: x2y �� � 2xy � � 3y � cosx,

which is associated with homogenous DEQ: x2y �� � 2xy � � 3y � 0.

Mechanical Systems

Mass, Spring, Damper (see animation in class)

Hooke’s Law: FS � �kx, where k � 0 (Spring Force)

FR � �cv � �c dx

dt
, where c � 0 (Resistance/Damping Force)

Newton: F � ma � m d2x

dt2
.

Therefore m d2x

dt2
� FS � FR, or mx �� � cx � � kx � 0. (homogeneous model with damping)



External Periodic Force

mx �� � cx � � kx � F�t� (model which includes damping and nonhomogeneous external force)

More General Mathematical Treatment

A�t�x �� � B�t�x � � C�t�x � F�t� or A�x�y �� � B�x�y � � C�x�y � F�x�.

Normal Form: y �� � p�x�y � � q�x�y � f�x�, obtained if A�x� � 0 on the interval of interest.

Superposition of Homogeneous DEQ Solutions Theorem: If y1, y2 are solutions to y �� � p�x�y � � q�x�y � 0,

and c1, c2 are constants, then y � c1y1 � c2y2 is also a solution.

This generalizes to nth order DEQs.

Proof: We are given that y1
�� � p�x�y1

� � q�x�y1 � 0 and y2
�� � p�x�y2

� � q�x�y2 � 0.

We must show that y �� � p�x�y � � q�x�y � 0 when substituting in y � c1y1 � c2y2.

Observe y � � c1y1
� � c2y2

� and y �� � c1y1
�� � c2y2

��.

Substituting in: y �� � p�x�y � � q�x�y � �c1y1
�� � c2y2

��� � p�x��c1y1
� � c2y2

� � � q�x��c1y1 � c2y2�

� c1y1
�� � c1p�x�y1

� � c1q�x�y1 � c2y2
�� � c2p�x�y2

� � c2q�x�y2

� c1�y1
�� � p�x�y1

� � q�x�y1� � c2�y2
�� � p�x�y2

� � q�x�y2�

� c1 � 0 � c2 � 0 � 0. �

So solutions to homogeneous DEQs form a vector space.

Existence and Uniqueness for Linear DEQs Theorem: Given: y �� � p1�x�y � � p2�x�y � f�x�,

if at a point x � a the expressions p1�x�, p2�x�, and f�x� are continuous on some interval,

then there’s a unique solution to y �� � p1�x�y � � p2�x�y � f�x� on that interval satisfying initial conditions:

y�a� � b0, y ��a� � b1, for any b0, b1 � �.



This generalizes to nth order DEQs.

Recall that each first order DEQ gave a unique solution for each point �a, b�.

For the 2nd order DEQ above, note that if we choose initial condition y�a� � b0, there is still an infinite number of solutions

based upon our choice of initial condition y ��a� � b1. Geometrically, this means that for every point in the plane, we can choose

any (finite) slope we want, and there will be a solution going through that point with that slope.
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y ���3y ��2y � 0 with y�0� � 1, but different slopes

Recall that in R
2, we needed two linearly independent vectors to span the vector space. Similarly, to span the solution set S of a

homogeneous second order DEQ, you need two linearly independent vectors, which in our case are functions y1, y2.

And as with the vectors in R
2, y1, y2 are linearly independent if they are not constant multiples of each other.

y1 � ky2 where k � R.

However, it’s not always clear cut whether two functions are constant multiples of each other.

Independence of Functions

Let’s develop the condition under which, given a DEQ y �� � p1�x�y � � p2�x�y � f�x�, and any two solutions y1, y2 we can say that

the solution y � c1y1 � c2y2 represents the general solution (spans the solutions space).

Well we know y1, y2 must be linearly independent, but how can we check this?

Recall that our existence theorem above for DEQ solutions suggests that if y IS our general solution, we should be able to

uniquely find any particular solution using any initial conditions y�a� � b0, y ��a� � b1. In other words, solve the system:

c1y1�a� � c2y2�a� � b0

c1y1
� �a� � c2y2

� �a� � b1

�
y1�a� y2�a�

y1
� �a� y2

� �a�

c1

c2

�
b0

b1

.

Observe that we can solve for c1, c2 uniquely if the determinant of the matrix is nonzero.

Further observe that for y to be the general solution, the determinant must be nonzero for every choice of a.

This suggests a method for identifying functions which are linearly independent.



Wronskian (denoted by: W ):

Given y1�x�, y2�x� we denote W�x� � W�y1, y2� :�
y1 y2

y1
�

y2
�

� y1y2
� � y1

� y2.

This generalizes to n EQs with an n � n determinant with n � 1 derivatives.

Wronskian of Solutions Theorem: If y1, y2 are solutions to y �� � p1�x�y � � p2�x�y � 0 on an interval I where p1, p2 are

continuous, then:

� y1, y2 are linearly dependent if and only if W�y1, y2� � 0, at each point x in I.

� y1, y2 are linearly independent if and only if W�y1, y2� � 0 at each point x in I.

For all other solutions y�x� to the homogeneous DEQ,

there exists c1, c2 � � such that: y�x� � c1y1�x� � c2y2�x� (general solution).

This generalizes to nth order DEQs with p1, . . . , pn, with n solutions y1,...,yn, and c1, . . . , cn � �.

General Solutions of Homogeneous DEQs Theorem: Let y1, y2 be linearly independent solutions of y �� � p�x�y � � q�x�y � 0,

with p, q continuous on some interval I. If Y is any solution whatsoever on I, then there exists c1, c2 � R such that

Y�x� � c1y1 � c2y2, for all x on I.

Proof: Choose a � I. Consider:

c1y1�a� � c2y2�a� � Y�a�,
c1y1

� �a� � c2y2
� �a� � Y ��a�.

y1�a� y2�a�

y1
� �a� y2

� �a�

c1

c2

�
Y�a�

Y ��a�

Observe: W�y1, y2� :�
y1�x� y2�x�

y1
��x� y2

� �x�
� 0 (for all x, including x � a), since we have independence.

So we can reduce the system to solve for c1, c2. But does Y � c1y1 � c2y2 for the rest of x � I?

Define G�x� :� c1y1�x� � c2y2�x�.
Observe that this solves the DEQ since it is a linear combination of solutions.

Recall that the uniqueness theorem tells us that solutions which satisfy

initial conditions y�a� � b1 and y ��a� � b2 are unique.

Note that G�a� � c1y1�a� � c2y2�a� � Y�a�.

and G��a� � c1y1
� �a� � c2y2

� �a� � Y ��a�.

So, since both G and Y satisfy the same initial conditions,



and are both solutions to the DEQ, Y�x� � G�x�, on I.

And we have Y�x� � c1y1 � c2y2, for all x on I. �

2nd Order Homogeneous DEQs w/ Constant Coefficients

In general, it is difficult/impossible to solve 2nd order DEQs.

So let us simplify to linear 2nd order homogeneous DEQs with constant coefficients.

ay �� � by � � cy � 0

To solve this, we need a y such that a linear combination of its derivatives is equal to y multiplied by

a constant (i.e., ay �� � by � � �cy).

Note if y :� erx, then: y � � �erx� � � rerx � ry. And y �� � r2y.

This implies we might be able to make this type of substitution to find a solution, by solving for r.

ar2y � bry � cy � 0
ar2 � br � c � 0, for y � 0.

Characteristic Equation Algorithm: To solve ay �� � by � � cy � 0, replace y ��, y �, y with r2, r, 1.

Then, algebraically solve the characteristic equation (ar2 � br � c � 0) for r.

� If solutions r1, r2 are real & distinct, y�x� � c1er1x � c2er2x is the general solution to our DEQ,

and the solution space has basis er1x, er2x .

� If r1 � r2, then y�x� � c1er1x � c2xer1x is the general solution,

and the solution space has basis er1x, xer1x .

This generalizes to nth order DEQs with y�n�, . . . y �, y and rn, . . . r2, r, 1.

Exercises

Problem: #36 Find the general solution: 2y �� � 3y � � 0.

2r2 � 3r � 0.

r�2r � 3� � 0.

r � 0, � 3
2

;



y�x� � c1 � c2e� 3
2

x.

Problem: #44 Given the general solution y�x� � c1e10x � c2e�10x of a homogeneous second order DEQ, find the DEQ in the

form ay �� � by � � cy � 0 with constant coefficients.

�r � 10��r � 10� � 0

r2 � 100 � 0.

y �� � 100y � 0.

Problem: #31 y1 � sin x2 and y2 � cosx2 are linearly independent functions, but show that their Wronskian vanishes (is

equal to zero) at x � 0. Why does this imply that there is no differential equation having both y1 and y2 as (global) solutions, of

the form y �� � p1�x�y � � p2�x�y � 0, with both p1 and p2 continuous everywhere?

W�y1, y2� �
sin x2 cosx2

2x cosx2 �2x sin x2

� �2x sin2x2 � 2x cos2x2

� �2x�sin2x2 � cos2x2� � �2x.

�2x vanishes at x � 0.

"Why does this imply that there is no differential equation of the form y �� � p1�x�y � � p2�x�y � 0, with both p1 and p2

continuous everywhere, having both y1 and y2 as global solutions?"

In order for y1 and y2 to be linearly independent solutions of the equation y �� � p1y � � p2y � 0

(with p1 and p2 both continuous) on an open interval I containing x � 0,

the Wronskian of Solutions Theorem requires W � 0 on I.


