MATH 2243: Linear Algebra & Differential Equations

4.2: The Vector Space \mathbb{R}^n and Subspaces

Dimensions n > 3, what are they good for?

Time, multiple particle systems, robotics, stock portfolios, local properties (pressure, temperature, color, velocity, etc.).

Vector addition/scalar multiplication in higher dimensions? Analogous to $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$.

Subspaces

Subspaces: Given vector space V (e.g., \mathbb{R}^3 in the image above), then W (the plane in the image) is a subset of V, and is called a subspace if:

- ♦ *W* is nonempty (it contains at least one vector),
- Given $\vec{u}, \vec{v} \in W$, we have $\vec{u} + \vec{v} \in W$, (*W* is closed under addition)

• Given $c \in \mathbb{R}$, we have $c\vec{u} \in W$. (*W* is closed under scalar multiplication)

And therefore $\vec{0} \in W$. Why?

Also, convince yourself that the *x*-axis and the *y*-axis (just the axes themselves, no other points), joined together as a subset of \mathbb{R}^3 , does not constitute a subspace.

Solution Subspace Theorem: For $A^{m \times n}$, the solution set of the homogeneous linear system

 $\mathbf{A}\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^n .

Proof: Let *W* denote the solution set of the system. If \vec{u} and \vec{v} are vectors in *W*, then $A\vec{u} = A\vec{v} = \vec{0}$.

Hence:
$$\mathbf{A}(\vec{u} + \vec{v}) = \mathbf{A}\vec{u} + \mathbf{A}\vec{v} = \vec{0} + \vec{0} = \vec{0}$$
.

Thus the sum $\vec{u} + \vec{v}$ is also in W, and hence W is closed under addition.

Next, if
$$c \in \mathbb{R}$$
, then $\mathbf{A}(c\vec{u}) = c(\mathbf{A}\vec{u}) = c\vec{0} = \vec{0}$.

Thus $c\vec{u}$ is in W if \vec{u} is in W. Hence W is also closed under scalar multiplication. Therefore, W is a subspace of \mathbb{R}^n . **Proof**: Let's do proof by contradiction. Let \vec{u} be a solution in *W*, the set of solutions to the nonhomogeneous system above. And let us make the dubious assumption that *W* is a subspace.

Let $c = 0 \in \mathbb{R}$. By closure under scalar multiplication, $c\vec{u} = 0\vec{u} = \vec{0}$ is a solution.

Therefore, $\mathbf{A} \vec{0} = \vec{0} = \vec{b}$. But we assumed the system was nonhomogeneous: $\vec{b} \neq \vec{0}$.

So we have a contradiction, and our assumption that the set of solutions W was a subspace was incorrect.

An alternative proof is provided in the book.

Function Spaces

Vector Space of Functions:

Let $F = \{$ all real valued functions $\}$; includes all polynomials, trig functions, exponentials, etc...

Observe that for \mathbf{f}, \mathbf{g} in F, we have: $\mathbf{f}(x) + \mathbf{g}(x) = (\mathbf{f} + \mathbf{g})(x)$ and $c(\mathbf{f}(x)) = (c\mathbf{f})(x)$, which are also real valued functions.

The other properties of a vector space follow from the fact that these functions are real valued. The textbook proves one of the properties.

Video Tutorial (visually rich and intuitive): https://youtu.be/fNk_zzaMoSs

Exercises 🔶

Problem: #16 For the following system of equations, find two solution vectors \vec{u} and \vec{v} (a basis) such that the **solution** space is the set of all linear combinations of the form $s\vec{u} + t\vec{v}$.

$$\begin{aligned} x_1 - 4x_2 - 3x_3 - 7x_4 &= 0\\ 2x_1 - x_2 + x_3 + 7x_4 &= 0 \end{aligned}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -4 & -3 & -7 \\ 2 & -1 & 1 & 7 \\ 1 & 2 & 3 & 11 \end{bmatrix} \xrightarrow{\text{trust me}} \begin{bmatrix} 1 & 0 & 1 & 5 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Thus, $x_3 = s$ and $x_4 = t$ are free variables. We solve for $x_2 = -s - 3t$, and $x_1 = -s - 5t$. So ...

$$\vec{x} = (x_1, x_2, x_3, x_4) = (-s - 5t, -s - 3t, s, t)$$

$$= (-s, -s, s, 0) + (-5t, -3t, 0, t) = s\vec{u} + t\vec{v}$$
, where $\vec{u} = (-1, -1, 1, 0)$ and $\vec{v} = (-5, -3, 0, 1)$.

Problem: #22 Reduce the given system to echelon form to find a single solution vector \vec{u} such that the solution space is the set of all scaler multiples of \vec{u} .

$$x_1 + 3x_2 + 3x_3 + 3x_4 = 0,$$

$$2x_1 + 7x_2 + 5x_3 - x_4 = 0,$$

$$2x_1 + 7x_2 + 4x_3 - 4x_4 = 0.$$

A =	1	3	3	3	trust me ⇒	1	0	0	6	
	2	7	5	-1		0	1	0	-4	
	2	7	4	-4		0	0	1	3	

Thus $x_4 = t$ is a parameter (a.k.a. free variable).

We solve for $x_1 = -6t$, $x_2 = 4t$, and $x_3 = -3t$. So,

$$\vec{x} = (x_1, x_2, x_3, x_4) = (-6t, 4t, -3t, t) = t\vec{u}$$
, where $\vec{u} = (-6, 4, -3, 1)$.

Problem: #29 Let **A** be an $n \times n$ matrix, \vec{b} be a nonzero vector, and \vec{x}_0 be a solution vector to the system $\mathbf{A}\vec{x} = \vec{b}$. Show that \vec{x}_2 is another solution **if and only if** (\Leftrightarrow) $\vec{x}_2 - \vec{x}_0$ is a solution of the homogeneous system $\mathbf{A}\vec{y} = \vec{0}$.

We are given: $\mathbf{A}\vec{x}_0 = \vec{b}$. Need to show that: $\mathbf{A}\vec{x}_2 = \vec{b} \iff \mathbf{A}(\vec{x}_2 - \vec{x}_0) = \vec{0}$.

Starting with the left assumption, and trying to show the thing on the right, we have: $\mathbf{A}(\vec{x_2} - \vec{x}_0) = \mathbf{A}\vec{x_2} - \mathbf{A}\vec{x}_0 = \vec{b} - \vec{b} = 0.$ \checkmark

Going from right to left, we have:
$$\mathbf{A}(\overrightarrow{x_2} - \overrightarrow{x}_0) = \mathbf{A}\overrightarrow{x_2} - \mathbf{A}\overrightarrow{x}_0 = \mathbf{A}\overrightarrow{x_2} - \overrightarrow{b} = 0$$
, therefore $\mathbf{A}\overrightarrow{x_2} = \overrightarrow{b}$. Q. E. D.

Problem: #6. Assume *W* is the set of all vectors in \mathbb{R}^4 such that $x_1 = 3x_3$ and $x_2 = 4x_4$. Apply the theorems in this section to determine whether or not *W* is a subspace of \mathbb{R}^4 .

$$W = \left\{ \left(3c, \ 4d, \ c, \ d \right) \right\}.$$

First, note that the subspace is nonempty since $(3, 4, 1, 1) \in W$, where c, d = 1.

We arbitrarily choose two vectors from W by arbitrarily choosing four constant $c_1, d_1, c_2, d_2 \in \mathbb{R}$, giving us $(3c_1, 4d_1, c_1, d_1)$ and $(3c_2, 4d_2, c_2, d_2)$. We then test them for closure under addition:

 $(3c_1, 4d_1, c_1, d_1) + (3c_2, 4d_2, c_2, d_2)$ = $(3c_1 + 3c_2, 4d_1 + 4d_2, c_1 + c_2, d_1 + d_2)$ = $(3(c_1 + c_2), 4(d_1 + d_2), c_1 + c_2, d_1 + d_2) \in W$ This is because it has the prescribed format $\{(3c, 4d, c, d)\}$, where $c = c_1 + c_2$ and $d = d_1 + d_2$.

Now to test scalar multiplication:

 $\alpha(3c_1, 4d_1, c_1, d_1) = (3\alpha c_1, 4\alpha d_1, \alpha c_1, \alpha d_1) \in W = \{(3c, 4d, c, d)\}$ where $c = \alpha c_1$ and $d = \alpha d_1$.

Therefore, *W* is nonempty, closed under addition, and scalar multiplication, and is a subspace of \mathbb{R}^4 .