MATH 2243: Linear Algebra & Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu **Website**: math.umn.edu/~moreyjc

2.5: Closer Look at the Euler Method

Euler Method Error:

If $\frac{dy}{dx} = f(x,y)$, $y(x_0) = y_0$ has a unique solution on [a,b], and we have the Euler approximations y_1, y_2, \dots, y_k to the actual values $y(x_1), y(x_2), \dots, y(x_k)$ which have been computed using step size h, then the error $|y_i - y(x_i)| \le h \cdot C$ for some C > 0.

The value C (and therefore the amount of error) increases as the maximum value of |y''(x)| increases on [a,b].

Improvement in Euler Method: Apply the iterative formulas...

$$k_1 = f(x_n, y_n),$$

$$u_{n+1} = y_n + h \cdot k_1,$$

$$k_2 = f(x_{n+1}, u_{n+1})$$

$$y_{n+1} = y_n + h \cdot \frac{1}{2}(k_1 + k_2).$$

To obtain approximations $(y_1, y_2, ...)$ of the actual values $(y(x_1), y(x_2), ...)$.

Note: While the improved method may reduce the number of approximations $(y_1, y_2, ...)$ needed to reach some level of accuracy, since it involves more calculations for every approximation, it is not guaranteed that a computer program can obtain the increased accuracy in less time than the original method would have. However, it *is* known that if the desired solution y has a continuous third derivative, then the improved Euler method is indeed more efficient at obtaining accuracy. In a great many practical applications, this requirement is known to be satisfied, even if the exact solution y is not yet known.

Problem: #2

Apply the improved Euler method to approximate the following differential equation on [0, 0.5] with step size h = 0.1. Construct a table showing four-decimal-place values of the approximate solution and actual solution at the points x = 0.1, 0.2, 0.3, 0.4, and 0.5.

$$y' = 2y$$
, $y(0) = \frac{1}{2}$; $y(x) = \frac{1}{2}e^{2x}$.

Apply the iterative formulas...

$$k_1 = f(x_n, y_n),$$

$$u_{n+1} = y_n + h \cdot k_1,$$

$$k_2 = f(x_{n+1}, u_{n+1})$$

$$y_{n+1} = y_n + h \cdot \frac{1}{2}(k_1 + k_2).$$

$$y_{1} = y_{0} + h \cdot \frac{1}{2}(k_{1} + k_{2}) = \frac{1}{2} + \frac{1}{20}(k_{1} + k_{2})$$

$$k_{1} = f(x_{0}, y_{0}) = f(0, \frac{1}{2}) = 2 \cdot \frac{1}{2} = 1.$$

$$u_{1} = y_{0} + \frac{1}{10} \cdot 1 = \frac{1}{2} + \frac{1}{10} = \frac{6}{10}.$$

$$k_{2} = f(x_{1}, u_{1}) = f(\frac{1}{10}, \frac{6}{10}) = 2 \cdot \frac{6}{10} = \frac{12}{10}.$$

$$y_{1} = \frac{1}{2} + \frac{1}{20}(1 + \frac{12}{10}) = \frac{1}{2} + \frac{22}{200} = \frac{122}{200} = 0.61.$$

$$y_{2} = 0.61 + \frac{1}{20}(k_{1} + k_{2})$$

$$k_{1} = f(x_{1}, y_{1}) = f(0.1, 0.61) = 2 \cdot 0.61 = 1.22.$$

$$u_{2} = y_{1} + \frac{1}{10} \cdot 1.22 = 0.61 + 0.122 = 0.732.$$

$$k_{2} = f(x_{2}, u_{2}) = f(0.2, 0.732) = 2 \cdot 0.732 = 1.464.$$

Etc....

x	0.0	0.1	0.2	0.3	0.4	0.5
y with h = 0.1	0.5000	0.6100	0.7422	0.9079	1.1077	1.3514
y actual	0.5000	0.6107	0.7459	0.9111	1.1128	1.3591

Problem: #6

Same as the previous problem except with...

 $y_2 = 0.61 + \frac{1}{20}(1.22 + 1.464) = 0.7442$

$$y' = -2xy$$
, $y(0) = 2$; $y(x) = 2e^{-x^2}$.

$$y_{1} = y_{0} + h \cdot \frac{1}{2}(k_{1} + k_{2}) = 2 + \frac{1}{20}(k_{1} + k_{2})$$

$$k_{1} = f(x_{0}, y_{0}) = f(0, 2) = -2 \cdot 0 \cdot 2 = 0.$$

$$u_{1} = y_{0} + \frac{1}{10} \cdot 0 = 2.$$

$$k_{2} = f(x_{1}, u_{1}) = f(\frac{1}{10}, 2) = -2 \cdot \frac{1}{10} \cdot 2 = -\frac{2}{5}.$$

$$y_{1} = 2 + \frac{1}{20}(0 - \frac{2}{5}) = 1.98.$$

$$y_{2} = y_{1} + \frac{1}{20}(k_{1} + k_{2})$$

$$k_{1} = f(x_{1}, y_{1}) = f(0.1, 1.98) = -2 \cdot 0.1 \cdot 1.98$$

$$k_1 = f(x_1, y_1) = f(0.1, 1.98) = -2 \cdot 0.1 \cdot 1.98 = -0.396$$

 $u_2 = y_1 + \frac{1}{10} \cdot -0.396 = 1.98 - 0.0396 = 1.9404$

 $k_2 = f(x_2, u_2) = f(0.2, 1.9404) = -2 \cdot 0.2 \cdot 1.9404 = -0.77616$ $y_2 = 1.98 + \frac{1}{20}(-0.396 - 0.77616) = 1.921392$

Etc....

x	0.0	0.1	0.2	0.3	0.4	0.5
y with h = 0.1	2.0000	1.9800	1.9214	1.8276	1.7041	1.5575
y actual	2.0000	1.9801	1.9216	1.8279	1.7043	1.5576