### 8.7 Singular Values

Rectangular matrices do not have e-vals (why?).

Gram matrices  $\mathbf{K} = \mathbf{A}^T \mathbf{A}$  are square and symmetric for *any*  $\mathbf{A}$ .

So how do the e-vals of K relate to A?

**Definition**: The singular value (s-val)  $\sigma_1, ..., \sigma_r$  of  $\mathbf{A}^{m \times n}$  are the positive square roots,  $\sigma_i = \sqrt{\lambda_i} > 0$ , of the nonzero e-vals of the Gram matrix  $\mathbf{K} = \mathbf{A}^T \mathbf{A}$ . The corresponding e-vecs of  $\mathbf{K}$  are known as the singular vectors (s-vecs) of  $\mathbf{A}$ .

But what if  $\lambda_i < 0$ ? It can't happen, recall that Gram matrices **K** are positive semidefinite ( $\lambda_i \ge 0$ ), which justifies positivity of s-vals of **A** (independently of whether **A** itself has positive, negative, or even complex e-vals; or is rectangular and has no e-vals at all!).

We will label s-vals in decreasing order:  $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_r > 0$ .

**Concretely:** Let 
$$\mathbf{A} = \begin{bmatrix} 3 & 5 \\ 4 & 0 \end{bmatrix}$$
. Observe:  $\mathbf{K} = \mathbf{A}^T \mathbf{A} = \begin{bmatrix} 3 & 4 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 25 & 15 \\ 15 & 25 \end{bmatrix}$ .

**K** has  $\lambda_1 = 40$ ,  $\lambda_2 = 10$ , and e-vecs:  $\vec{v}_1 = (1, 1)$ , and  $\vec{v}_2 = (1, -1)$ .

Thus, s-vals of **A** are  $\sigma_1 = \sqrt{40} \approx 6.325$  and  $\sigma_2 = \sqrt{10} \approx 3.162$  with s-vecs  $\vec{v}_1, \vec{v}_2$ .

In particular, A's s-vals are not A's e-vals, which are  $\lambda_1 \approx 6.217$  and  $\lambda_2 \approx -3.217$ , nor are A's s-vecs the e-vecs of A.

Indeed, the e-vecs of **A** are (-0.8043, 1) and (1.554, 1).

**Proposition**: If  $\mathbf{A} = \mathbf{A}^T$ , then  $\mathbf{A}$ 's s-vals are the absolute values of its nonzero e-vals:  $\sigma_i = |\lambda_i| > 0$ . Also,  $\mathbf{A}$ 's s-vecs coincide with its non–null e-vecs.

**Proof**: When **A** is symmetric,  $\mathbf{K} = \mathbf{A}^T \mathbf{A} = \mathbf{A}^2$ .

So, if 
$$A\vec{v} = \lambda\vec{v}$$
, then  $K\vec{v} = A^2\vec{v} = A(\lambda\vec{v}) = \lambda A\vec{v} = \lambda^2\vec{v}$ .

So,  $\sigma = \sqrt{\lambda^2} = |\lambda| > 0$ .

Thus, every e-vec  $\vec{v}$  of **A** is also an e-vec of **K** with **K** e-val  $\lambda^2$ .

Also, observe that the e-vec basis of symmetric A (guaranteed by previous thm) is also an e-vec basis for K,

and hence forms a complete system of s-vecs for A.

# Singular Value Decomposition (SVD)

Recall spectral (e-basis) factorization of symmetric matrices:  $\mathbf{A} = \mathbf{Q}\mathbf{A}\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$ .

We can generalize this to nonsymmetric matrices, this is known as singular value decomposition.

**Theorem**: A nonzero real  $\mathbf{A}^{m \times n}$  of rank r > 0 can be factored,

$$\mathbf{A} = \mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^T \tag{(*)}$$

where  $\mathbf{P}^{m \times r}$  has orthonormal columns, so  $\mathbf{P}^T \mathbf{P} = \mathbf{I}$ . The diagonal  $\mathbf{\Sigma}^{r \times r} = diag(\sigma_1, \dots, \sigma_r)$  has the s-vals of **A** as diagonal entries, and  $\mathbf{Q}^T$  is  $r \times n$  with orthonormal rows, so  $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$ , where  $\mathbf{Q} = [\vec{q}_i]$  and the  $\vec{q}_i$  are orthonormal e-vecs of the Gram matrix  $\mathbf{K} = \mathbf{A}\mathbf{A}^T$ .

Proof: Let's begin by rewriting (\*) as  $AQ = P\Sigma$ .

(this is allowed since the  $\vec{q}_i$  are the orthonormal e-vecs of **K** corresponding to the nonzero e-vals. So, **Q** is invertible)

The individual columns of this equation are:  $\mathbf{A}\vec{q}_i = \sigma_i\vec{p}_i$ , where i = 1, ..., r. (\*\*)

This eq. relates orthonormal columns of  $\mathbf{Q} = \begin{bmatrix} \vec{q}_1, \dots, \vec{q}_r \end{bmatrix}$  to orthonormal columns of  $\mathbf{P} = \begin{bmatrix} \vec{p}_1, \dots, \vec{p}_r \end{bmatrix}$ .

Thus, our goal is to find orthonormal  $\vec{p}_1, \dots, \vec{p}_r$ .

Recall that the **K** e-vecs  $\vec{q}_i$  (according to a previous proposition), form a basis for *img* **K** = *coimg* **A** of dimension r = rank **A**.

Thus, by the definition of the s-vals:  $\mathbf{A}^T \mathbf{A} \vec{q}_i = \mathbf{K} \vec{q}_i = \sigma_i^2 \vec{q}_i$ , where i = 1, ..., r. (\* \* \*)

We claim that the image vecs  $\vec{w}_i = \mathbf{A}\vec{q}_i$  are automatically orthogonal.

Indeed, in view of the orthonormality of the  $\vec{q}_i$  combined with (\* \* \*), we have:

$$\vec{w}_i \cdot \vec{w}_j = \vec{w}_i^T \vec{w}_j = \left(\mathbf{A}\vec{q}_i\right)^T \mathbf{A}\vec{q}_j = \vec{q}_i^T \mathbf{A}^T \mathbf{A}\vec{q}_j$$

$$= \vec{q}_i^T \sigma_j^2 \vec{q}_j = \sigma_j^2 \vec{q}_i^T \vec{q}_j = \sigma_j^2 \vec{q}_i \cdot \vec{q}_j = \begin{cases} 0, & i \neq j, \\ \sigma_i^2, & i = j \end{cases}$$

Consequently,  $\vec{w}_1, \ldots, \vec{w}_r$  form an orthogonal system of vecs having:  $|\vec{w}_i| = \sqrt{\vec{w}_i \cdot \vec{w}_i} = \sigma_i$ .

So, the associated unit vecs:  $\vec{p}_i = \frac{\vec{w}_i}{\sigma_i} = \frac{A\vec{q}_i}{\sigma_i}$ , (\* \* \* \*)

where i = 1, ..., r, form an orthonormal set of vecs.

Rearranging this equation, we find:  $\mathbf{A}\vec{q}_i = \sigma_i \vec{p}_i$ , satisfying (\* \*).

**Corollary**: **A** and  $\mathbf{A}^T$  have the same s-vals.

- **Proof**: Observe that taking the transpose of (\*) (and noting  $\Sigma^T = \Sigma$  is diagonal), we obtain:  $\mathbf{A}^T = \mathbf{Q}\Sigma\mathbf{P}^T$ , which is a SVD of  $\mathbf{A}^{T}$ .
- Observe that the s-vecs are not the same. Indeed, those of A are the orthogonal columns of Q, where as those of  $\mathbf{A}^{T}$  are the orthonormal columns of **P**.

The SVD serves to diagonalize the Gram matrix **K**. Indeed, since  $\mathbf{P}^T \mathbf{P} = \mathbf{I}$ , we have:  $\mathbf{Q}^T \mathbf{K} \mathbf{Q} =$ 

 $= \mathbf{Q}^T (\mathbf{A}^T \mathbf{A}) \mathbf{Q}$  $= \mathbf{Q}^T \mathbf{A}^T (\mathbf{P}\mathbf{P}^T) \mathbf{A}\mathbf{Q}$ =  $(\mathbf{P}^T \mathbf{A} \mathbf{Q})^T (\mathbf{P}^T \mathbf{A} \mathbf{Q}) = \mathbf{\Sigma}^T \mathbf{\Sigma} = \mathbf{\Sigma}^2$ . (\*\*) (since  $\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$ )

If A has rank n, then Q is an  $n \times n$  orthogonal matrix and so (\* \*) implies that the linear transformation of  $\mathbb{R}^n$ by K is diagonalized when expressed in terms of the orthonormal basis formed by the s-vecs.

**Concretely**: For 
$$\mathbf{A} = \begin{bmatrix} 3 & 5 \\ 4 & 0 \end{bmatrix}$$
 seen above, find SVD.  
We had calculated  $\mathbf{K} = \mathbf{A}^T \mathbf{A} = \begin{bmatrix} 25 & 15 \\ 15 & 25 \end{bmatrix}$ , with  $\sigma_1 = \sqrt{40}$  and  $\sigma_2 = \sqrt{10}$ .  
Normalizing the  $\mathbf{K}$  e-vecs found above gives orthonormal basis of  $\mathbf{A}$  s-vecs:  $\vec{q}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ ,  $\vec{q}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ .

Thus, 
$$\mathbf{Q} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
.

Next, according to (\* \* \* \*), we have:  $\vec{p}_1 = \frac{A\vec{q}_1}{\sigma_1} = \frac{1}{\sqrt{40}} \begin{bmatrix} 4\sqrt{2} \\ 2\sqrt{2} \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{bmatrix}$ ,  $\vec{p}_2 = \frac{A\vec{q}_2}{\sigma_2} = \frac{1}{\sqrt{10}} \begin{bmatrix} \sqrt{2} \\ -2\sqrt{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix}$ , and thus  $\mathbf{P} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}$ . Checking my work:  $\mathbf{A} = \begin{bmatrix} 3 & 5 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \sqrt{40} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$ .

**Proposition**: Given the SVD  $\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$ , the columns  $\vec{q}_1, \dots, \vec{q}_r$  of  $\mathbf{Q}$  form an orthonormal basis for *coimg*  $\mathbf{A}$ , while the columns  $\vec{p}_1, \dots, \vec{p}_r$  of  $\mathbf{P}$  form and orthonormal basis for *img*  $\mathbf{A}$ .

Proof: The first part of the proposition is automatic, since the  $\vec{q}_1, \ldots, \vec{q}_r$  were defined to be the orthonormal

e-vecs of  $\mathbf{K} = \mathbf{A}^T \mathbf{A}$ , and therefore in *coimg*  $\mathbf{A}$ , which has the same dimensions *r* as *img*  $\mathbf{A}$ .

Moreover,  $\vec{p}_i = \mathbf{A}\left(\frac{\vec{q}_i}{\sigma_i}\right)$  for i = 1, ..., r were shown in the above proof to be mutually orthogonal,

of unit length, and belong to img A. They therefore form an orthonormal basis for the image.

For SVD ( $\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$ ), matrix  $\mathbf{Q}^T$  represents an orthogonal projection from  $\mathbb{R}^n$  to *coimg*  $\mathbf{A}$ ,

then  $\Sigma$  represents a stretching transformation within the *r*-dim subspace, while **P** maps the results to *img* **A**  $\subset \mathbb{R}^m$ .



We have finally reached a complete understanding of the subtle geometry underlying the simple operation of multiplying a vector by a matrix!

**Example:** True/False? If A is symmetric, then its s-vals are the same as its e-vals.

False:  $\sigma_i = |\lambda_i| > 0$ ; its s-vecs coincide with its **non-null** e-vecs.

**Example:** True/False? The s-vals of  $A^2$  are the squares of the s-vals of A.

False: 
$$\mathbf{A}^2 = (\mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T)^2 = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$$
 ... ??  
Let:  $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ .  $\mathbf{K}_1 = \mathbf{A}^T \mathbf{A} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ .  $\sigma \in \{1, 2, 3\}$   
Observe:  $\mathbf{A}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ .  $\mathbf{K}_2 = (\mathbf{A}^2)^T \mathbf{A}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ . No S-vals!

}.

## The Pseudoinverse

Many matrices do not have an inverse, but we can generalize the idea of an inverse in a useful way.

**Definition**: The *pseudoinverse* of a nonzero  $m \times n$  matrix with SVD  $\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T$  is the  $n \times m$  matrix  $\mathbf{A}^+ := \mathbf{Q} \mathbf{\Sigma}^{-1} \mathbf{P}^T$ .

If  $\mathbf{A}^{n \times n}$  is nonsingular, then  $\mathbf{A}^+ = \mathbf{A}^{-1}$ .

$$\mathbf{A}^{-1} = (\mathbf{P}\boldsymbol{\Sigma}\mathbf{Q}^{T})^{-1} = (\mathbf{Q}^{-1})^{T}\boldsymbol{\Sigma}^{-1}\mathbf{P}^{-1} = \mathbf{Q}\boldsymbol{\Sigma}^{-1}\mathbf{P}^{T} = \mathbf{A}^{+}.$$

But there is a quicker way:

**Lemma**: Let  $\mathbf{A}^{m \times n}$  have rank *n*. Then  $\mathbf{A}^{+} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}$ .

**Proof**: Observe:  $\mathbf{A}^T \mathbf{A} = (\mathbf{P} \Sigma \mathbf{Q}^T)^T (\mathbf{P} \Sigma \mathbf{Q}^T) = \mathbf{Q} \Sigma \mathbf{P}^T \mathbf{P} \Sigma \mathbf{Q}^T = \mathbf{Q} \Sigma^2 \mathbf{Q}^T$ , since  $\Sigma = \Sigma^T$  is a diagonal matrix, and  $\mathbf{P}^T \mathbf{P} = \mathbf{I}$ .

This is spectral factorization of Gram matrix  $\mathbf{A}^T \mathbf{A}$  — which we already knew from original definition of s-vals and s-vecs.

If **A** has rank *n*, then **Q** is  $n \times n$  orthogonal. So  $\mathbf{Q}^{-1} = \mathbf{Q}^{T}$ .

Therefore,  $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T = (\mathbf{Q} \mathbf{\Sigma}^2 \mathbf{Q}^T)^{-1} (\mathbf{P} \mathbf{\Sigma} \mathbf{Q}^T)^T$ 

 $= (\mathbf{Q}\mathbf{\Sigma}^{-2}\mathbf{Q}^T)(\mathbf{Q}\mathbf{\Sigma}\mathbf{P}^T)$ 

$$= \mathbf{Q} \mathbf{\Sigma}^{-1} \mathbf{P}^T = \mathbf{A}^+.$$

Say we want to solve  $\mathbf{A}\vec{x} = \vec{b}$ . Rearranging, we want  $\vec{x}$  such that  $\mathbf{A}\vec{x} - \vec{b} = \vec{0}$ .

In real life, this often is not possible. So, instead we look for  $\vec{x}$  that minimizes  $|\vec{r}| := |\mathbf{A}\vec{x} - \vec{b}|$ .

This is known as the *least squares solution* to the linear system, because  $|\vec{r}|^2 = r_1^2 + ... + r_n^2$  is the sum of the squares of the individual error components.

**Theorem:** Consider  $\mathbf{A}\vec{x} = \vec{b}$ . Let  $\vec{x}^* = \mathbf{A}^+\vec{b}$ . If ker  $\mathbf{A} = \{\vec{0}\}$ , then  $\vec{x}^*$  is the (Euclidean) least-squares solution to  $\mathbf{A}\vec{x} = \vec{b}$ . If, more generally, ker  $\mathbf{A} \neq \{\vec{0}\}$ , then  $\vec{x}^* = \mathbf{A}^+\vec{b} \in coimg \mathbf{A}$  is the least-squares solution that has the minimal Euclidean norm  $(|\vec{x}^*| \le |\vec{x}|)$  among all  $\vec{x}$  that minimize the least-squares error  $|\mathbf{A}\vec{x} - \vec{b}|^2$ .

**Proof**: Relies on a section we did not cover this semester.

**Concretely**: Find the pseudoinverse of 
$$\mathbf{A} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix}$$
.

Observe that this  $3 \times 2$  matrix has rank A = 2. Therefore, the (quicker way) lemma above applies and:

-4

$$\mathbf{A}^{+} = (\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T} = \left( \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}.$$
Now find the least-squares solution of  $\mathbf{A}\vec{x} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$  that has the minimal Euclidean norm  $(|\vec{x}^{*}| \le |\vec{x}|).$ 

$$\mathbf{A}^{+}\overrightarrow{b} = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1\\ 3\\ -4 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\\ -3 \end{bmatrix}.$$

#### The Euclidean Matrix Norm

**Theorem**: Let  $|\cdot|_2$  denote the Euclidean norm on  $\mathbb{R}^n$ . Let **A** be nonzero with s-vals  $\sigma_1 \ge ... \ge \sigma_r$ . Then, the Euclidean norm of **A**, defined as  $|\mathbf{A}|_2 := \max\{|\mathbf{A}\vec{u}|_2 : |\vec{u}|_2 = 1\}$  equals its dominant (largest) s-val. So:  $\max\{|\mathbf{A}\vec{u}|_2 : |\vec{u}|_2 = 1\} = \sigma_1$ , while  $|\mathbf{O}|_2 = 0$ .

**Proof**: Note that we don't need to prove the definition, only that  $\max \{ |\mathbf{A}\vec{u}|_2 : |\vec{u}|_2 = 1 \} = \sigma_1.$ 

Let  $\vec{q}_1, \dots, \vec{q}_n$  be an orthonormal basis of  $\mathbb{R}^n$  consisting of the s-vecs  $\vec{q}_1, \dots, \vec{q}_r$  along with an orthonormal basis  $\vec{q}_{r+1}, \dots, \vec{q}_n$  of ker **A**.

Thus by a thm in sect 8.6 (not covered by this class),  $\mathbf{A}\vec{q}_i = \begin{cases} \sigma_i \vec{p}_i, & i = 1, ..., r, \\ 0, & i = r+1, ..., n \end{cases}$ 

where  $\vec{p}_1, \dots, \vec{p}_r$  form and orthonormal basis for *img* **A**.

Suppose  $\vec{u}$  is any unit vector, so  $\vec{u} = c_1 \vec{q}_1 + \ldots + c_n \vec{q}_n$ , where  $|\vec{u}| = \sqrt{c_1^2 + \ldots + c_n^2} = 1$ ,

thanks to the orthonormality of the basis vecs and the Pythagorean formula. Then,  $\mathbf{A}\vec{u} = ??$ 

$$\mathbf{A}\vec{u} = c_1\sigma_1\vec{p}_1 + \dots + c_r\sigma_r\vec{p}_r$$
, and hence  $|\mathbf{A}\vec{u}|_2 = \sqrt{c_1^2\sigma_1^2 + \dots + c_r^2\sigma_r^2}$ , since  $\vec{p}_1, \dots, \vec{p}_n$  are also orthonormal.

Now, since  $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r$ , we have  $|\mathbf{A}\vec{u}|_2 = \sqrt{c_1^2\sigma_1^2 + \ldots + c_r^2\sigma_r^2} \le \sqrt{c_1^2\sigma_1^2 + \ldots + c_r^2\sigma_1^2} = \sigma_1\sqrt{c_1^2 + \ldots + c_n^2} = \sigma_1$ .

Moreover, if  $c_1 = 1$ ,  $c_2 = \dots = c_n = 0$ , then  $\vec{u} = \vec{q}_1$ , and hence  $|\mathbf{A}\vec{u}|_2 = |\mathbf{A}\vec{q}_1|_2 = |\sigma_1\vec{p}_1|_2 = \sigma_1$ .

This implies the desired formula.

**Concretely:** Consider 
$$\mathbf{A} = \begin{bmatrix} 0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{2} \\ \frac{2}{5} & \frac{1}{5} & 0 \end{bmatrix}$$
. What is its Euclidean norm?

Gram matrix 
$$\mathbf{A}^{T}\mathbf{A} = \begin{bmatrix} \frac{89}{400} & \frac{2}{25} & \frac{1}{8} \\ \frac{2}{25} & \frac{34}{225} & -\frac{1}{9} \\ \frac{1}{8} & -\frac{1}{9} & \frac{13}{36} \end{bmatrix}$$
 has e-vals  $\lambda_{1} \approx 0.447$ ,  $\lambda_{2} \approx 0.267$ ,  $\lambda_{3} \approx 0.021$ ,

and hence the s-vals of A are their square roots:  $\sigma_1 \approx 0.669$ ,  $\sigma_2 \approx 0.516$ ,  $\sigma_3 \approx 0.145$ .

The Euclidean norm of A is the largest s-val, and so  $|A|_2 \approx 0.669$ .

# **Condition Number and Rank**

Not only do s-vals provide a compelling geometric interpretation of the action of a matrix on a vector, s-vals also play a role in computer algorithms.

The magnitudes of s-vals can be used to distinguish a well behaved linear system from ill-conditioned ones, which are more challenging to solve accurately.

This information is quantified by the **condition number**  $\kappa$  of a matrix.



[see animation in class]

**Definition**: The *condition number*  $\kappa$  of a nonsingular  $n \times n$  matrix is the ratio between its largest and smallest s-vals:  $\kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_n}$ .

Since the number of s-vals equals the matrix's rank, an  $n \times n$  matrix with fewer than n s-vals is singular, and is said to have condition number  $\infty$ .

A matrix with a very large condition number is close to singular, and is designated as ill-conditioned.

In practical terms, this occurs when the condition number is larger than the reciprocal of the machine's precision, e.g., 10<sup>7</sup>.

It is much harder to solve  $\overrightarrow{Ax} = \overrightarrow{b}$  when its coefficient matrix is ill-conditioned, and hence close to singular.

**Theorem:** Let  $\mathbf{A}^{m \times n}$  have rank *r* and SVD  $\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^{T}$ .

Given  $1 \le k \le r$ , let  $\Sigma_k$  denote the upper left  $k \times k$  diagonal submatrix of  $\Sigma$  containing the largest k s-vals on  $\Sigma'$ s diagonal. Let  $\mathbf{Q}_k$  be  $n \times k$  formed from the first k columns of  $\mathbf{Q}$ , which are the first k orthonormal s-vecs of  $\mathbf{A}$ , and let  $\mathbf{P}_k$  be  $m \times k$  formed from the first k columns of  $\mathbf{P}$ . Then  $m \times n$  matrix  $\mathbf{A}_k = \mathbf{P}_k \Sigma_k \mathbf{Q}_k^T$  has rank k. Moreover,  $\mathbf{A}_k$  is the closest rank k matrix to  $\mathbf{A}$  in the sense that, among all  $m \times n$  matrices  $\mathbf{B}$  of rank k, the Euclidean matrix norm  $|\mathbf{A} - \mathbf{B}|$  is minimized when  $\mathbf{B} = \mathbf{A}_k$ . Proof in book.

Can't do better than this with matrix of lower rank:  $|\mathbf{A} - \mathbf{B}|$  is minimized when  $\mathbf{B} = \mathbf{A}_k$  among all matrices with rank  $\mathbf{B} \le k$ .

So, when solving ill-conditioned  $\mathbf{A}\vec{x} = \vec{b}$ , a strategy is to eliminate "insignificant" s-vals below a cut off, replacing  $\mathbf{A}$  by  $\mathbf{A}_k$ .

Applying the corresponding approximating pseudoinverse  $\mathbf{A}_{k}^{+} = \mathbf{Q}_{k} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{P}_{k}^{T}$  to solve for  $\vec{x}^{*} = \mathbf{A}_{k}^{+} \vec{b}$  will usually circumvent the effects of ill-conditioning.

# **Image Compression**

How do computers store images?



Divide an image into pixels, *n* pixels wide, and *m* pixels high. This gives us an  $A^{m \times n}$  matrix. But how do we define each matrix component?

Pixel: Each color can be defined by some mixture of red/blue/green.

Mathematically, we will use hexadecimals  $\{0, 1, \dots, 9, A, B, \dots, F\}$ .

So, let each color be two digits, this gives us  $16 \times 16 = 256$  shades of each color (where 00 = black and FF = white).

And with three primary colors, this gives us  $256^3 = 16,777,216$  numbers (colors) per pixel.



For a 100 × 100 pixel image, you must store  $10,000 \cdot 256^3 \approx 168$  billion choices of color.

For a  $1280 \times 720$  pixel image (HD standard), that is  $1280 \cdot 720 \cdot 256^3 \approx 15.5$  trillion choices of color, takes up a lot of resources!

There must be a different way, right?



Throw away the less relevant data.

Recall (?) from dynamical systems that there are e-val/e-vec pairs that dominate the behavior of the system. That is, the ones associated with the e-vals of greatest magnitude.

**Example**: if  $(\lambda_i, v_i) \in \{(10, \vec{v}_1), (5, \vec{v}_2), (\frac{1}{2}\vec{v}_3)\}$  for a discrete dynamical system, then for most initial states, what's the long-term behavior of the system?

Grows without bound, parallel to  $\vec{v}_1$ .

But the image matrix above won't be square (needed for e-vals), so we need SVD:  $\mathbf{A} = \mathbf{P} \mathbf{\Sigma} \mathbf{Q}^{T}$ .

This allows us to compress data by only using the first *k* columns of **P**, the upper left  $k \times k$  submatrix of  $\Sigma$ , and the first *k* rows of  $\mathbf{Q}^T$ .





 $Learn\ more:\ overby e. engr.tamu.edu/wp-content/uploads/sites/146/2020/10/ECEN615\_Fall2020\_Lect17.pdf$