Applied Linear Algebra
Instructor: Jodin Morey = moreyjc@umn.edu

8.7 Singular Values

Rectangular matrices do not have e-vals (why?).

Gram matrices K = ATA are square and symmetric for any A.

So how do the e-vals of K relate to A?

Definition: The singular value (s-val) 61, ...,0, of A™" are the positive square roots, o; = ,/)T, > 0, of the

nonzero e-vals of the Gram matrix K = A”A. The corresponding e-vecs of K are known as the

singular vectors (s-vecs) of A.

0 But what if 1, < 0? It can’t happen, recall that Gram matrices K are positive semidefinite (1; > 0),

which justifies positivity of s-vals of A (independently of whether A itself has positive, negative,

or even complex e-vals; or is rectangular and has no e-vals at all!).

We will label s-vals in decreasing order: 61 > 02 >...> o, > 0.
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Concretely: Let A = . Observe: K = A'A = = .
40 50 4 0 15 25

Khas 1; = 40, A, = 10, and e-vecs: V| = (1,1), and V> = (1,-1).

I

Thus, s-vals of A are o1 = /40 ~ 6.325and 6> = /10 =~ 3.162 with s-vecs V1, V.
In particular, A’s s-vals are not A’s e-vals, which are 1| = 6.217 and 1, = —3.217, nor are A’s s-vecs the e-vecs of A.

Indeed, the e-vecs of A are (—0.8043,1) and (1. 554,1).

Proposition: If A = A7, then A’s s-vals are the absolute values of its nonzero e-vals: ; = |A;| > 0.

Also, A’s s-vecs coincide with its non—null e-vecs.

Proof: When A is symmetric, K = ATA = A%

So, if AV = AV, then KV = A’V = A(AV) = 1AV = A2V,



So,0 = JAZ = || > 0.
Thus, every e-vec V of A is also an e-vec of K with K e-val 12. |
Also, observe that the e-vec basis of symmetric A (guaranteed by previous thm) is also an e-vec basis for K,

and hence forms a complete system of s-vecs for A.

Singular Value Decomposition (SVD)

Recall spectral (e-basis) factorization of symmetric matrices: A = QAQ ™' = QAQ”.

We can generalize this to nonsymmetric matrices, this is known as singular value decomposition.

Theorem: A nonzero real A™" of rank » > 0 can be factored,
A = PzQT (%)
where P™ has orthonormal columns, so P’P = I. The diagonal 2™ = diag(c1,...,0,) has the
s-vals of A as diagonal entries, and Q7 is 7 x n with orthonormal rows, so Q”Q = I, where Q = [71']

and the ¢, are orthonormal e-vecs of the Gram matrix K = AA”.

Proof: Let’s begin by rewriting (x) as AQ = PZ.

(this is allowed since the ﬁ’i are the orthonormal e-vecs of K corresponding to the nonzero e-vals. So, Q is invertible)

The individual columns of this equation are: Aﬁ’i = Giﬁi, wherei =1,...,r. (* %)
This eq. relates orthonormal columns of Q = [71, ,ﬁ)r] to orthonormal columns of P = [ﬁ)l, ,ﬁ)r].
Thus, our goal is to find orthonormal 7, ..., 7,.

Recall that the K e-vecs ¢, (according to a previous proposition), form a basis for imgK = coimg A

of dimension r = rank A.
Thus, by the definition of the s-vals: ATA?fl. = Kﬁ’i = 0?7]’1., wherei = 1,...,7. (% * %)
We claim that the image vecs w; = Aﬁ)i are automatically orthogonal.

Indeed, in view of the orthonormality of the ¢, combined with (* * ), we have:

VV)I' 'Wj = WITWJ = <A7,->TA7,- = 7iTATA7j



T = T > = 0, i:'t,js
=4,0;49;=0;9,49;, =0;49;°4; = ..
o7, i=].

Consequently, W1, ..., W, form an orthogonal system of vecs having: |W;| = W + W; = o,

: : e S A7,
So, the associated unit vecs: p; = == = <1, (o * x %)
wherei = 1,...,r, form an orthonormal set of vecs.
Rearranging this equation, we find: A, = 0,p,, satisfying (x *). u

Corollary: A and A” have the same s-vals.

Proof: Observe that taking the transpose of (x) (and noting =7 = X is diagonal), we obtain: A7 = QZP?,
which is a SVD of AT, [ |

Observe that the s-vecs are not the same. Indeed, those of A are the orthogonal columns of Q,

where as those of AT are the orthonormal columns of P.
The SVD serves to diagonalize the Gram matrix K. Indeed, since P’P = I, we have: Q’KQ =
= Q'(ATA)Q
= Q"AT(PPT)AQ
= (PTAQ) (PTAQ) = Z7Z =32, (x %) (since A = PEQT)

If A has rank n, then Q is an n x n orthogonal matrix and so (* *) implies that the linear transformation of R”

by K is diagonalized when expressed in terms of the orthonormal basis formed by the s-vecs.

35
Concretely: For A = |: 40 :| seen above, find SVD.

25 15

We had calculated K = ATA = |: 15 25 :|,with 61 = 440 and o, = J/10.

1
Normalizing the K e-vecs found above gives orthonormal basis of A s-vecs: ¢, = ‘/13 y G, =
2
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Next, according to (x * * x), we have: p, = qull = ﬁ|: 23 :| /13 ,
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Checking my work: A = [ :| =
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Proposition: Given the SVD A = PZQ?, the columns G1,...,q. of Q form an orthonormal
q 1 q r

basis for coimg A, while the columns 31, ,Fr of P form and orthonormal basis for img A.
Proof: The first part of the proposition is automatic, since the le, ,Tjr were defined to be the orthonormal

e-vecs of K = ATA, and therefore in coimg A, which has the same dimensions r as img A.
Moreover, p, = A(Z—) fori = 1,...,r were shown in the above proof to be mutually orthogonal,

of unit length, and belong to img A . They therefore form an orthonormal basis for the image. |

For SVD (A = PZQY), matrix Q7 represents an orthogonal projection from R” to coimg A,

then X represents a stretching transformation within the 7-dim subspace, while P maps the results to img A < R".

»

2

Change of basis in R

|l

=,
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A¥2? SVD when r = n.

.

0 00 = o 5 “/V’ 0.5 ' < ]’
\: Append 1 more basis /

(impact of a row of zeros in X)

We have finally reached a complete understanding of the subtle geometry underlying the simple operation of multiplying a
vector by a matrix!



Example: True/False? If A is symmetric, then its s-vals are the same as its e-vals.
False: o; = |A;| > 0; its s-vecs coincide with its non-null e-vecs.
Example: True/False? The s-vals of A? are the squares of the s-vals of A.

False: A2 = (PZQ’)” = PXQ’PZQ’ L2

0 1 T 00 01 00
Let: A = . K =ATA= - o e {1}
00 10 00 0 1
00 00
Observe: A? = ) K, = (A2)"A? = . No S-vals!
00 00

The Pseudoinverse
Many matrices do not have an inverse, but we can generalize the idea of an inverse in a useful way.

Definition: The pseudoinverse of a nonzero m x n matrix with SVD A = PZQ7 is
the n x m matrix A* = QX'P7.

If A™" is nonsingular, then A* = A,
AT = (PZQ") = (@ H)'=P = Q=P = A"

But there is a quicker way:

Lemma: Let A™" have rank #n. Then A* = (ATA) 'AT.

Proof: Observe: A’A = (P2Q7) (PZQ7) = QZP’PEQ’ = Qx2Q’,

since T=X7 is a diagonal matrix, and P"P = L

This is spectral factorization of Gram matrix A”A — which we already knew from original definition of s-vals and s-vecs.
If A has rank #, then Q is n x n orthogonal. So Q! = Q.

Therefore, (A7A) A7 = (Q22Q7) ' (PzQ”)"

- (Qz7Q)(QzP")



= QX 'PT = A" [
R . N N
Say we want to solve AX = b. Rearranging, we want x such that Ax — b = 0.
N
In real life, this often is not possible. So, instead we look for ¥’ that minimizes |7| = |AE> -b |

This is known as the least squares solution to the linear system, because
|? | g r? +...+r2 is the sum of the squares of the individual error components.
Theorem: Consider AX = b. Letx = A"bh. Ifker A = {O}, then X is the (Euclidean)
. N — — o — .
least-squares solution to Ax = b. If, more generally, ker A # {0}, then X = A*b € coimgA

is the least-squares solution that has the minimal Euclidean norm (|?* | < |? |) among all ¥ that

—12
minimize the least-squares error |A? -b | .

Proof: Relies on a section we did not cover this semester.

20
Concretely: Find the pseudoinverse of A =| 0 -1
0 0

Observe that this 3 x 2 matrix has rank A = 2. Therefore, the (quicker way) lemma above applies and:

-1

2 0
. 2.0 0 2.0 0

A = (ATA) AT = 0 -1
0 -1 0 0 o 0 -1 0

Now find the least-squares solution of AXY = 3 that has the minimal Euclidean norm ( |?* | < |? |).

—4



AT = 00 3 | = "7
0 -1 0 3

I\)|,_‘

The Euclidean Matrix Norm

Theorem: Let ||, denote the Euclidean norm on R”. Let A be nonzero with s-vals 61 >...> o,.
Then, the Euclidean norm of A, defined as |A|, := max{|A7|2 ], = 1} equals its

dominant (largest) s-val. So: max{|Az7|2 ||, = 1} = o1, while |O|, = 0.

Proof: Note that we don’t need to prove the definition, only that max{|A7 | - |7 | , = 1} =0].

Letq,,...,q, be an orthonormal basis of R" consisting of the s-vecs ¢, ..., ¢, along with

an orthonormal basis ¢, ,,..., ¢, of ker A.

- .
oip;, i=1,...,r,
Thus by a thm in sect 8.6 (not covered by this class), Aq, = P |
, I=r+1,....,n

3

where 5’1, ,ﬁr form and orthonormal basis for img A.

. . - —
Suppose %/ is any unit vector, s0 % = ¢1q, +...+¢nq ,, where |i| = Jci +...+c2 =1,

thanks to the orthonormality of the basis vecs and the Pythagorean formula. Then, A% = ??

— — . — —
AY = 101, +...+¢,0,p,, and hence |A%|, = Jelot +...+cko?, since B, ..., P, are also orthonormal.

. -
Now, since 61 > 02 >...> o, we have |A%|, = Jelot +. +cko? < Jclo} +...+cto} = o1 fct+...+ck =0

. - - -
Moreover, ifc; = 1, ¢2 =...= ¢, = 0, then & = ¢, and hence |Az7|2 = |Aq1|2 = |01pl|2 =0,

This implies the desired formula. |
11
0 -3 3
Concretely: Consider A= | + 0 £ | Whatis its Euclidean norm?
2 1
5 5 0
8 2 1
200 25 %
Gram matrix ATA = Z 2 -] has e-vals 11 ~ 0.447, 1> ~ 0.267, A3 = 0.021,

-1 13

L
8 9 6



and hence the s-vals of A are their square roots: o; = 0.669, o, =~ 0.516, o3 = 0.145.

The Euclidean norm of A is the largest s-val, and so |A|, = 0.669.

Condition Number and Rank

Not only do s-vals provide a compelling geometric interpretation of the action of a matrix on a vector, s-vals also play a role in
computer algorithms.

The magnitudes of s-vals can be used to distinguish a well behaved linear system from ill-conditioned ones, which are more
challenging to solve accurately.

This information is quantified by the condition number « of a matrix.

[see animation in class]

Definition: The condition number k of a nonsingular n x n matrix is the ratio between its largest and smallest

s-vals: k(A) = +-.

Since the number of s-vals equals the matrix’s rank, an #n x n matrix with fewer than » s-vals is singular, and is said to have
condition number oo.

A matrix with a very large condition number is close to singular, and is designated as ill-conditioned.

In practical terms, this occurs when the condition number is larger than the reciprocal of the machine’s precision, e.g., 107.

-
It is much harder to solve AX = b when its coefficient matrix is ill-conditioned, and hence close to singular.

Theorem: Let A" have rank » and SVD A = PEQ”.
Given 1 < k < r, let I denote the upper left k x k diagonal submatrix of T containing the largest & s-vals on T's diagonal.
Let Q, be n x k formed from the first k£ columns of Q, which are the first & orthonormal
s-vecs of A, and let P, be m x k formed from the first £ columns of P.
Then m x n matrix Ay = P;2:Q ,{ has rank k. Moreover, Ay is the closest rank & matrix to A in the sense that,

among all m x n matrices B of rank £, the Euclidean matrix norm |A — B| is minimized when B = A;.



Proof in book.

Can’t do better than this with matrix of lower rank: [A — B| is minimized when B = A; among all matrices with rankB < k.
So, when solving ill-conditioned AX = Z, a strategy is to eliminate "insignificant" s-vals below a cut off, replacing A by A;.

Applying the corresponding approximating pseudoinverse A; = Q,Z;' P/ to solve for X = AZZ) will usually circumvent

the effects of ill-conditioning.

Image Compression

How do computers store images?

Divide an image into pixels, n pixels wide, and m pixels high. This gives us an A™" matrix.

But how do we define each matrix component?

Pixel: Each color can be defined by some mixture of red/blue/green.
Mathematically, we will use hexadecimals {0,1,...,9,4,B,...,F}.
So, let each color be two digits, this gives us 16 x 16 = 256 shades of each color (where 00 = black and FF' = white).
And with three primary colors, this gives us 256 = 16,777,216 numbers (colors) per pixel.

EXXXUXX e
#FFFFFF = White

#AOAOAOQ = Gray

R B #FF0000 = Red
G #00FF00 = Green

#0000FF = Blue




For a 100 x 100 pixel image, you must store 10,000 - 256 ~ 168 billion choices of color.

For a 1280 x 720 pixel image (HD standard), that is 1280 - 720 - 2563 ~ 15.5 trillion choices of color,

takes up a lot of resources!

0 There must be a different way, right?

The Different Way

Throw away the less relevant data.

Recall (?) from dynamical systems that there are e-val/e-vec pairs that dominate the behavior of the system.

That is, the ones associated with the e-vals of greatest magnitude.

Example: if (1;,v;) € {(10,71 ), (5,72), (17?3>} for a discrete dynamical system,

then for most initial states, what’s the long-term behavior of the system?
Grows without bound, parallel to V.
But the image matrix above won’t be square (needed for e-vals), so we need SVD: A = PZQ.

This allows us to compress data by only using the first k& columns of P, the upper left k x k submatrix of Z,
and the first k£ rows of Q7.
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Learn more: overbye.engr.tamu.edu/wp-content/uploads/sites/146/2020/10/ECEN615_Fall2020 Lectl7.pdf



