8.7 Singular Values

Rectangular matrices do not have e-vals (why?).

Gram matrices $\mathbf{K}=\mathbf{A}^{T} \mathbf{A}$ are square and symmetric for any \mathbf{A}.

So how do the e-vals of \mathbf{K} relate to \mathbf{A} ?

Definition: The singular value (s-val) $\sigma_{1}, \ldots, \sigma_{r}$ of $\mathbf{A}^{m \times n}$ are the positive square roots, $\sigma_{i}=\sqrt{\lambda_{i}}>0$, of the nonzero e-vals of the Gram matrix $\mathbf{K}=\mathbf{A}^{T} \mathbf{A}$. The corresponding e-vecs of \mathbf{K} are known as the singular vectors (s-vecs) of A.

But what if $\lambda_{i}<0$? It can't happen, recall that Gram matrices \mathbf{K} are positive semidefinite ($\lambda_{i} \geq 0$), which justifies positivity of s-vals of \mathbf{A} (independently of whether \mathbf{A} itself has positive, negative, or even complex e-vals; or is rectangular and has no e-vals at all!).

We will label s-vals in decreasing order: $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>0$.

Concretely: Let $\mathbf{A}=\left[\begin{array}{ll}3 & 5 \\ 4 & 0\end{array}\right]$. Observe: $\mathbf{K}=\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{ll}3 & 4 \\ 5 & 0\end{array}\right]\left[\begin{array}{ll}3 & 5 \\ 4 & 0\end{array}\right]=\left[\begin{array}{ll}25 & 15 \\ 15 & 25\end{array}\right]$.
\mathbf{K} has $\lambda_{1}=40, \lambda_{2}=10$, and e-vecs: $\vec{v}_{1}=(1,1)$, and $\vec{v}_{2}=(1,-1)$.

Thus, s-vals of \mathbf{A} are $\sigma_{1}=\sqrt{40} \approx 6.325$ and $\sigma_{2}=\sqrt{10} \approx 3.162$ with s-vecs \vec{v}_{1}, \vec{v}_{2}.

In particular, A's s-vals are not A's e-vals, which are $\lambda_{1} \approx 6.217$ and $\lambda_{2} \approx-3.217$, nor are \mathbf{A} 's s-vecs the e-vecs of \mathbf{A}.

Indeed, the e-vecs of \mathbf{A} are $(-0.8043,1)$ and $(1.554,1)$.

Proposition: If $\mathbf{A}=\mathbf{A}^{T}$, then \mathbf{A} 's s-vals are the absolute values of its nonzero e-vals: $\sigma_{i}=\left|\lambda_{i}\right|>0$.
Also, A's s-vecs coincide with its non-null e-vecs.

Proof: When \mathbf{A} is symmetric, $\mathbf{K}=\mathbf{A}^{T} \mathbf{A}=\mathbf{A}^{2}$.

So, if $\mathbf{A} \vec{v}=\lambda \vec{v}$, then $\mathbf{K} \vec{v}=\mathbf{A}^{2} \vec{v}=\mathbf{A}(\lambda \vec{v})=\lambda \mathbf{A} \vec{v}=\lambda^{2} \vec{v}$.

So, $\sigma=\sqrt{\lambda^{2}}=|\lambda|>0$.

Thus, every e-vec \vec{v} of \mathbf{A} is also an e-vec of \mathbf{K} with \mathbf{K} e-val λ^{2}.

Also, observe that the e-vec basis of symmetric A (guaranteed by previous thm) is also an e-vec basis for \mathbf{K}, and hence forms a complete system of s-vecs for \mathbf{A}.

Singular Value Decomposition (SVD)

Recall spectral (e-basis) factorization of symmetric matrices: $\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{-1}=\mathbf{Q} \Lambda \mathbf{Q}^{T}$.
We can generalize this to nonsymmetric matrices, this is known as singular value decomposition.

Theorem: A nonzero real $\mathbf{A}^{m \times n}$ of rank $r>0$ can be factored,

$$
\begin{equation*}
\mathbf{A}=\mathbf{P} \Sigma \mathbf{Q}^{T} \tag{*}
\end{equation*}
$$

where $\mathbf{P}^{m \times r}$ has orthonormal columns, so $\mathbf{P}^{T} \mathbf{P}=\mathbf{I}$. The diagonal $\boldsymbol{\Sigma}^{r \times r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ has the s-vals of \mathbf{A} as diagonal entries, and \mathbf{Q}^{T} is $r \times n$ with orthonormal rows, so $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$, where $\mathbf{Q}=\left[\vec{q}_{i}\right]$ and the \vec{q}_{i} are orthonormal e-vecs of the Gram matrix $\mathbf{K}=\mathbf{A} \mathbf{A}^{T}$.

Proof: Let's begin by rewriting ($*$) as $\mathbf{A Q}=\mathbf{P \Sigma}$.
(this is allowed since the \vec{q}_{i} are the orthonormal e-vecs of \mathbf{K} corresponding to the nonzero e-vals. So, \mathbf{Q} is invertible)

The individual columns of this equation are: $\mathbf{A} \vec{q}_{i}=\sigma_{i} \vec{p}_{i}$, where $i=1, \ldots, r . \quad(* *)$

This eq. relates orthonormal columns of $\mathbf{Q}=\left[\vec{q}_{1}, \ldots, \vec{q}_{r}\right]$ to orthonormal columns of $\mathbf{P}=\left[\vec{p}_{1}, \ldots, \vec{p}_{r}\right]$.

Thus, our goal is to find orthonormal $\vec{p}_{1}, \ldots, \vec{p}_{r}$.

Recall that the \mathbf{K} e-vecs \vec{q}_{i} (according to a previous proposition), form a basis for $\operatorname{img} \mathbf{K}=\operatorname{coimg} \mathbf{A}$ of dimension $r=\operatorname{rank} \mathbf{A}$.

Thus, by the definition of the s-vals: $\mathbf{A}^{T} \mathbf{A} \vec{q}_{i}=\mathbf{K} \vec{q}_{i}=\sigma_{i}^{2} \vec{q}_{i}$, where $i=1, \ldots, r . \quad(* * *)$

We claim that the image vecs $\vec{w}_{i}=\mathbf{A} \vec{q}_{i}$ are automatically orthogonal.

Indeed, in view of the orthonormality of the \vec{q}_{i} combined with $(* * *)$, we have:

$$
\vec{w}_{i} \cdot \vec{w}_{j}=\vec{w}_{i}^{T} \vec{w}_{j}=\left(\mathbf{A} \vec{q}_{i}\right)^{T} \mathbf{A} \vec{q}_{j}=\vec{q}_{i}^{T} \mathbf{A}{ }^{T} \mathbf{A} \vec{q}_{j}
$$

$$
=\vec{q}_{i}^{T} \sigma_{j}^{2} \vec{q}_{j}=\sigma_{j}^{2} \vec{q}_{i}^{T} \vec{q}_{j}=\sigma_{j}^{2} \vec{q}_{i} \cdot \vec{q}_{j}=\left\{\begin{array}{cc}
0, & i \neq j \\
\sigma_{i}^{2}, & i=j
\end{array}\right.
$$

Consequently, $\vec{w}_{1}, \ldots, \vec{w}_{r}$ form an orthogonal system of vecs having: $\left|\vec{w}_{i}\right|=\sqrt{\vec{w}_{i} \cdot \vec{w}_{i}}=\sigma_{i}$.

So, the associated unit vecs: $\vec{p}_{i}=\frac{\vec{w}_{i}}{\sigma_{i}}=\frac{\mathbf{A} \vec{q}_{i}}{\sigma_{i}}$,

where $i=1, \ldots, r$, form an orthonormal set of vecs.

Rearranging this equation, we find: $\mathbf{A} \vec{q}_{i}=\sigma_{i} \vec{p}_{i}$, satisfying $(* *)$.

Corollary: A and \mathbf{A}^{T} have the same s-vals.

Proof: Observe that taking the transpose of $(*)$ (and noting $\boldsymbol{\Sigma}^{T}=\boldsymbol{\Sigma}$ is diagonal), we obtain: $\mathbf{A}^{T}=\mathbf{Q} \Sigma \mathbf{P}^{T}$, which is a SVD of \mathbf{A}^{T}.

Observe that the s-vecs are not the same. Indeed, those of \mathbf{A} are the orthogonal columns of \mathbf{Q}, where as those of \mathbf{A}^{T} are the orthonormal columns of \mathbf{P}.

The SVD serves to diagonalize the Gram matrix \mathbf{K}. Indeed, since $\mathbf{P}^{T} \mathbf{P}=\mathbf{I}$, we have: $\mathbf{Q}^{T} \mathbf{K} \mathbf{Q}=$

$$
\begin{aligned}
& =\mathbf{Q}^{T}\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{Q} \\
& =\mathbf{Q}^{T} \mathbf{A}^{T}\left(\mathbf{P P}^{T}\right) \mathbf{A} \mathbf{Q} \\
& =\left(\mathbf{P}^{T} \mathbf{A} \mathbf{Q}\right)^{T}\left(\mathbf{P}^{T} \mathbf{A} \mathbf{Q}\right)=\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{2} . \quad(* *) \quad\left(\text { since } \mathbf{A}=\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}\right)
\end{aligned}
$$

If A has rank n, then \mathbf{Q} is an $n \times n$ orthogonal matrix and so $(* *)$ implies that the linear transformation of \mathbb{R}^{n} by \mathbf{K} is diagonalized when expressed in terms of the orthonormal basis formed by the s-vecs.

Concretely: For $\mathbf{A}=\left[\begin{array}{ll}3 & 5 \\ 4 & 0\end{array}\right]$ seen above, find SVD.

We had calculated $\mathbf{K}=\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{ll}25 & 15 \\ 15 & 25\end{array}\right]$, with $\sigma_{1}=\sqrt{40}$ and $\sigma_{2}=\sqrt{10}$.
Normalizing the \mathbf{K} e-vecs found above gives orthonormal basis of \mathbf{A} s-vecs: $\vec{q}_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right], \vec{q}_{2}=\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$.

Thus, $\mathbf{Q}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]$.
Next, according to $(* * * *)$, we have: $\vec{p}_{1}=\frac{\mathbf{A} \vec{q}_{1}}{\sigma_{1}}=\frac{1}{\sqrt{40}}\left[\begin{array}{l}4 \sqrt{2} \\ 2 \sqrt{2}\end{array}\right]=\left[\begin{array}{l}\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}}\end{array}\right]$,

$$
\vec{p}_{2}=\frac{\mathbf{A} \vec{q}_{2}}{\sigma_{2}}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}
\sqrt{2} \\
-2 \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}}
\end{array}\right] \text {, and thus } \mathbf{P}=\left[\begin{array}{cc}
\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}}
\end{array}\right]
$$

Checking my work: $\mathbf{A}=\left[\begin{array}{ll}3 & 5 \\ 4 & 0\end{array}\right]=\left[\begin{array}{cc}\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}}\end{array}\right]\left[\begin{array}{cc}\sqrt{40} & 0 \\ 0 & \sqrt{10}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]=\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}$.

Proposition: Given the SVD $\mathbf{A}=\mathbf{P} \Sigma \mathbf{Q}^{T}$, the columns $\vec{q}_{1}, \ldots, \vec{q}_{r}$ of \mathbf{Q} form an orthonormal basis for $\operatorname{coimg} \mathbf{A}$, while the columns $\vec{p}_{1}, \ldots, \vec{p}_{r}$ of \mathbf{P} form and orthonormal basis for $\operatorname{img} \mathbf{A}$.

Proof: The first part of the proposition is automatic, since the $\vec{q}_{1}, \ldots, \vec{q}_{r}$ were defined to be the orthonormal
e-vecs of $\mathbf{K}=\mathbf{A}^{T} \mathbf{A}$, and therefore in $\operatorname{coimg} \mathbf{A}$, which has the same dimensions r as $\operatorname{img} \mathbf{A}$.

Moreover, $\vec{p}_{i}=\mathbf{A}\left(\frac{\vec{q}_{i}}{\sigma_{i}}\right)$ for $i=1, \ldots, r$ were shown in the above proof to be mutually orthogonal,
of unit length, and belong to $\operatorname{img} \mathbf{A}$. They therefore form an orthonormal basis for the image.

For $\operatorname{SVD}\left(\mathbf{A}=\mathbf{P} \Sigma \mathbf{Q}^{T}\right)$, matrix \mathbf{Q}^{T} represents an orthogonal projection from \mathbb{R}^{n} to $\operatorname{coimg} \mathbf{A}$, then Σ represents a stretching transformation within the r-dim subspace, while \mathbf{P} maps the results to $\operatorname{img} \mathbf{A} \subset \mathbb{R}^{m}$.

$\mathbf{A}^{3 \times 2}$ SVD when $r=n$.

We have finally reached a complete understanding of the subtle geometry underlying the simple operation of multiplying a vector by a matrix!

Example: True/False? If \mathbf{A} is symmetric, then its s-vals are the same as its e-vals.

False: $\sigma_{i}=\left|\lambda_{i}\right|>0$; its s-vecs coincide with its non-null e-vecs.

Example: True/False? The s-vals of \mathbf{A}^{2} are the squares of the s-vals of \mathbf{A}.

False: $\mathbf{A}^{2}=\left(\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}\right)^{2}=\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T} \mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}$

Let: $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] . \quad \mathbf{K}_{1}=\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] . \sigma \in\{1\}$.

Observe: $\mathbf{A}^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] . \quad \mathbf{K}_{2}=\left(\mathbf{A}^{2}\right)^{T} \mathbf{A}^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. No S-vals!

The Pseudoinverse

Many matrices do not have an inverse, but we can generalize the idea of an inverse in a useful way.

Definition: The pseudoinverse of a nonzero $m \times n$ matrix with $\operatorname{SVD} \mathbf{A}=\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}$ is the $n \times m$ matrix $\mathbf{A}^{+}:=\mathbf{Q} \Sigma^{-1} \mathbf{P}^{T}$.

If $\mathbf{A}^{n \times n}$ is nonsingular, then $\mathbf{A}^{+}=\mathbf{A}^{-1}$.
$\mathbf{A}^{-1}=\left(\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}\right)^{-1}=\left(\mathbf{Q}^{-1}\right)^{T} \boldsymbol{\Sigma}^{-1} \mathbf{P}^{-1}=\mathbf{Q} \boldsymbol{\Sigma}^{-1} \mathbf{P}^{T}=\mathbf{A}^{+}$.

But there is a quicker way:
Lemma: Let $\mathbf{A}^{m \times n}$ have rank n. Then $\mathbf{A}^{+}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}$.

Proof: Observe: $\mathbf{A}^{T} \mathbf{A}=\left(\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}\right)^{T}\left(\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}\right)=\mathbf{Q} \boldsymbol{\Sigma} \mathbf{P}^{T} \mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}=\mathbf{Q} \boldsymbol{\Sigma}^{2} \mathbf{Q}^{T}$, since $\boldsymbol{\Sigma}=\boldsymbol{\Sigma}^{T}$ is a diagonal matrix, and $\mathbf{P}^{T} \mathbf{P}=\mathbf{I}$.

This is spectral factorization of Gram matrix $\mathbf{A}^{T} \mathbf{A}$ — which we already knew from original definition of s-vals and s-vecs.

If \mathbf{A} has rank n, then \mathbf{Q} is $n \times n$ orthogonal. So $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$.

Therefore, $\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}=\left(\mathbf{Q} \Sigma^{2} \mathbf{Q}^{T}\right)^{-1}\left(\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}\right)^{T}$

$$
=\left(\mathbf{Q} \Sigma^{-2} \mathbf{Q}^{T}\right)\left(\mathbf{Q} \boldsymbol{\Sigma} \mathbf{P}^{T}\right)
$$

$$
=\mathbf{Q} \boldsymbol{\Sigma}^{-1} \mathbf{P}^{T}=\mathbf{A}^{+} .
$$

Say we want to solve $\mathbf{A} \vec{x}=\vec{b}$. Rearranging, we want \vec{x} such that $\mathbf{A} \vec{x}-\vec{b}=\overrightarrow{0}$.

In real life, this often is not possible. So, instead we look for \vec{x} that minimizes $|\vec{r}|:=|\mathbf{A} \vec{x}-\vec{b}|$.

This is known as the least squares solution to the linear system, because $|\vec{r}|^{2}=r_{1}^{2}+\ldots+r_{n}^{2}$ is the sum of the squares of the individual error components.

Theorem: Consider $\mathbf{A} \vec{x}=\vec{b}$. Let $\vec{x}^{*}=\mathbf{A}^{+} \vec{b}$. If $\operatorname{ker} \mathbf{A}=\{\overrightarrow{0}\}$, then \vec{x}^{*} is the (Euclidean) least-squares solution to $\mathbf{A} \vec{x}=\vec{b}$. If, more generally, $\operatorname{ker} \mathbf{A} \neq\{\overrightarrow{0}\}$, then $\vec{x}^{*}=\mathbf{A}^{+} \vec{b} \in \operatorname{coimg} \mathbf{A}$ is the least-squares solution that has the minimal Euclidean norm $\left(\left|\vec{x}^{*}\right| \leq|\vec{x}|\right)$ among all \vec{x} that minimize the least-squares error $|\mathbf{A} \vec{x}-\vec{b}|^{2}$.

Proof: Relies on a section we did not cover this semester.

Concretely: Find the pseudoinverse of $\mathbf{A}=\left[\begin{array}{cc}2 & 0 \\ 0 & -1 \\ 0 & 0\end{array}\right]$.

Observe that this 3×2 matrix has $\operatorname{rank} \mathbf{A}=2$. Therefore, the (quicker way) lemma above applies and:

$$
\begin{aligned}
\mathbf{A}^{+}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} & =\left(\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -1 \\
0 & 0
\end{array}\right]\right)^{-1}\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
\end{aligned}
$$

Now find the least-squares solution of $\mathbf{A} \vec{x}=\left[\begin{array}{c}-1 \\ 3 \\ -4\end{array}\right]$ that has the minimal Euclidean norm $\left(\left|\vec{x}^{*}\right| \leq|\vec{x}|\right)$.

$$
\mathbf{A}^{+} \vec{b}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
3 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
-3
\end{array}\right]
$$

The Euclidean Matrix Norm

Theorem: Let $|\cdot|_{2}$ denote the Euclidean norm on \mathbb{R}^{n}. Let \mathbf{A} be nonzero with s-vals $\sigma_{1} \geq \ldots \geq \sigma_{r}$.
Then, the Euclidean norm of \mathbf{A}, defined as $|\mathbf{A}|_{2}:=\max \left\{|\mathbf{A} \vec{u}|_{2}:|\vec{u}|_{2}=1\right\}$ equals its dominant (largest) s-val. So: $\max \left\{|\mathbf{A} \vec{u}|_{2}:|\vec{u}|_{2}=1\right\}=\sigma_{1}$, while $|\mathbf{O}|_{2}=0$.

Proof: Note that we don't need to prove the definition, only that $\max \left\{|\mathbf{A} \vec{u}|_{2}:|\vec{u}|_{2}=1\right\}=\sigma_{1}$.

Let $\vec{q}_{1}, \ldots, \vec{q}_{n}$ be an orthonormal basis of \mathbb{R}^{n} consisting of the s-vecs $\vec{q}_{1}, \ldots, \vec{q}_{r}$ along with an orthonormal basis $\vec{q}_{r+1}, \ldots, \vec{q}_{n}$ of ker \mathbf{A}.
Thus by a thm in sect 8.6 (not covered by this class), $\mathbf{A} \vec{q}_{i}=\left\{\begin{array}{l}\sigma_{i} \vec{p}_{i}, \quad i=1, \ldots, r, \\ 0, \quad i=r+1, \ldots, n\end{array}\right.$, where $\vec{p}_{1}, \ldots, \vec{p}_{r}$ form and orthonormal basis for img \mathbf{A}.

Suppose \vec{u} is any unit vector, so $\vec{u}=c_{1} \vec{q}_{1}+\ldots+c_{n} \vec{q}_{n}$, where $|\vec{u}|=\sqrt{c_{1}^{2}+\ldots+c_{n}^{2}}=1$, thanks to the orthonormality of the basis vecs and the Pythagorean formula. Then, $\mathbf{A} \vec{u}=? ?$
$\mathbf{A} \vec{u}=c_{1} \sigma_{1} \vec{p}_{1}+\ldots+c_{r} \sigma_{r} \vec{p}_{r}$, and hence $|\mathbf{A} \vec{u}|_{2}=\sqrt{c_{1}^{2} \sigma_{1}^{2}+\ldots+c_{r}^{2} \sigma_{r}^{2}}$, since $\vec{p}_{1}, \ldots, \vec{p}_{n}$ are also orthonormal.

Now, since $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}$, we have $|\mathbf{A} \vec{u}|_{2}=\sqrt{c_{1}^{2} \sigma_{1}^{2}+\ldots+c_{r}^{2} \sigma_{r}^{2}} \leq \sqrt{c_{1}^{2} \sigma_{1}^{2}+\ldots+c_{r}^{2} \sigma_{1}^{2}}=\sigma_{1} \sqrt{c_{1}^{2}+\ldots+c_{n}^{2}}=\sigma_{1}$.

Moreover, if $c_{1}=1, c_{2}=\ldots=c_{n}=0$, then $\vec{u}=\vec{q}_{1}$, and hence $|\mathbf{A} \vec{u}|_{2}=\left|\mathbf{A} \vec{q}_{1}\right|_{2}=\left|\sigma_{1} \vec{p}_{1}\right|_{2}=\sigma_{1}$.

This implies the desired formula.

Concretely: Consider $\mathbf{A}=\left[\begin{array}{ccc}0 & -\frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{2} \\ \frac{2}{5} & \frac{1}{5} & 0\end{array}\right]$. What is its Euclidean norm?

Gram matrix $\mathbf{A}^{T} \mathbf{A}=\left[\begin{array}{ccc}\frac{89}{400} & \frac{2}{25} & \frac{1}{8} \\ \frac{2}{25} & \frac{34}{225} & -\frac{1}{9} \\ \frac{1}{8} & -\frac{1}{9} & \frac{13}{36}\end{array}\right]$ has e-vals $\lambda_{1} \approx 0.447, \lambda_{2} \approx 0.267, \lambda_{3} \approx 0.021$,
and hence the s-vals of \mathbf{A} are their square roots: $\sigma_{1} \approx 0.669, \sigma_{2} \approx 0.516, \sigma_{3} \approx 0.145$.

The Euclidean norm of \mathbf{A} is the largest s-val, and so $|\mathbf{A}|_{2} \approx 0.669$.

Condition Number and Rank

Not only do s-vals provide a compelling geometric interpretation of the action of a matrix on a vector, s-vals also play a role in computer algorithms.

The magnitudes of s-vals can be used to distinguish a well behaved linear system from ill-conditioned ones, which are more challenging to solve accurately.

This information is quantified by the condition number κ of a matrix.

[see animation in class]

Definition: The condition number κ of a nonsingular $n \times n$ matrix is the ratio between its largest and smallest s-vals: $\kappa(\mathbf{A})=\frac{\sigma_{1}}{\sigma_{n}}$.

Since the number of s-vals equals the matrix's rank, an $n \times n$ matrix with fewer than $n \mathrm{~s}$-vals is singular, and is said to have condition number ∞.

A matrix with a very large condition number is close to singular, and is designated as ill-conditioned.

In practical terms, this occurs when the condition number is larger than the reciprocal of the machine's precision, e.g., 10^{7}.

It is much harder to solve $\mathbf{A} \vec{x}=\vec{b}$ when its coefficient matrix is ill-conditioned, and hence close to singular.

Theorem: Let $\mathbf{A}^{m \times n}$ have rank r and SVD $\mathbf{A}=\mathbf{P} \boldsymbol{\Sigma} \mathbf{Q}^{T}$.
Given $1 \leq k \leq r$, let Σ_{k} denote the upper left $k \times k$ diagonal submatrix of Σ containing the largest k s-vals on $\Sigma^{\prime} \mathrm{s}$ diagonal.
Let \mathbf{Q}_{k} be $n \times k$ formed from the first k columns of \mathbf{Q}, which are the first k orthonormal s-vecs of \mathbf{A}, and let \mathbf{P}_{k} be $m \times k$ formed from the first k columns of \mathbf{P}.

Then $m \times n$ matrix $\mathbf{A}_{k}=\mathbf{P}_{k} \boldsymbol{\Sigma}_{k} \mathbf{Q}_{k}^{T}$ has rank k. Moreover, \mathbf{A}_{k} is the closest rank k matrix to \mathbf{A} in the sense that, among all $m \times n$ matrices \mathbf{B} of rank k, the Euclidean matrix norm $|\mathbf{A}-\mathbf{B}|$ is minimized when $\mathbf{B}=\mathbf{A}_{k}$.

Can't do better than this with matrix of lower rank: $|\mathbf{A}-\mathbf{B}|$ is minimized when $\mathbf{B}=\mathbf{A}_{k}$ among all matrices with $\operatorname{rank} \mathbf{B} \leq k$.

So, when solving ill-conditioned $\mathbf{A} \vec{x}=\vec{b}$, a strategy is to eliminate "insignificant" s-vals below a cut off, replacing \mathbf{A} by \mathbf{A}_{k}.

Applying the corresponding approximating pseudoinverse $\mathbf{A}_{k}^{+}=\mathbf{Q}_{k} \boldsymbol{\Sigma}_{k}^{-1} \mathbf{P}_{k}^{T}$ to solve for $\vec{x}^{*}=\mathbf{A}_{k}^{+} \vec{b}$ will usually circumvent the effects of ill-conditioning.

Image Compression

How do computers store images?

Divide an image into pixels, n pixels wide, and m pixels high. This gives us an $\mathbf{A}^{m \times n}$ matrix.
But how do we define each matrix component?

Pixel: Each color can be defined by some mixture of red/blue/green.

Mathematically, we will use hexadecimals $\{0,1, \ldots, 9, A, B, \ldots, F\}$.

So, let each color be two digits, this gives us $16 \times 16=256$ shades of each color (where $00=$ black and $F F=$ white).

And with three primary colors, this gives us $256^{3}=16,777,216$ numbers (colors) per pixel.
\# XX XX XX
R G B

$$
\begin{aligned}
& \# 000000=\text { Black } \\
& \text { \#FFFFFF }=\text { White } \\
& \text { \#A0A0A0 }=\text { Gray } \\
& \# \text { FF0000 }=\text { Red } \\
& \# 00 \text { FF } 00=\text { Green } \\
& \# 0000 \text { FF }=\text { Blue }
\end{aligned}
$$

For a 100×100 pixel image, you must store $10,000 \cdot 256^{3} \approx 168$ billion choices of color.

For a 1280×720 pixel image (HD standard), that is $1280 \cdot 720 \cdot 256^{3} \approx 15.5$ trillion choices of color, takes up a lot of resources!
(1) There must be a different way, right?

The Different Way

Throw away the less relevant data.

Recall (?) from dynamical systems that there are e-val/e-vec pairs that dominate the behavior of the system. That is, the ones associated with the e-vals of greatest magnitude.

Example: if $\left(\lambda_{i}, v_{i}\right) \in\left\{\left(10, \vec{v}_{1}\right),\left(5, \vec{v}_{2}\right),\left(\frac{1,}{2} \vec{v}_{3}\right)\right\}$ for a discrete dynamical system, then for most initial states, what's the long-term behavior of the system?

Grows without bound, parallel to \vec{v}_{1}.

But the image matrix above won't be square (needed for e-vals), so we need SVD: $\mathbf{A}=\mathbf{P} \Sigma \mathbf{Q}^{T}$.

This allows us to compress data by only using the first \boldsymbol{k} columns of \mathbf{P}, the upper left $\boldsymbol{k} \times \boldsymbol{k}$ submatrix of $\boldsymbol{\Sigma}$, and the first \boldsymbol{k} rows of \mathbf{Q}^{T}.

$$
\mathbf{A}=\left[\begin{array}{ccccc}
\boldsymbol{u}_{11} & \boldsymbol{u}_{12} & u_{13} & \ldots & u_{1 m} \\
\boldsymbol{u}_{21} & \boldsymbol{u}_{22} & u_{23} & \ldots & u_{2 m} \\
\boldsymbol{u}_{31} & \boldsymbol{u}_{32} & u_{33} & \ldots & u_{3 m} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\boldsymbol{u}_{m 1} & \boldsymbol{u}_{m 2} & u_{m 3} & \ldots & u_{m m}
\end{array}\right]\left[\begin{array}{cccccc}
\sqrt{\lambda_{1}} & & & \\
& \sqrt{\lambda_{2}} & & & \\
& & \sqrt{\lambda_{3}} & & \\
& & & \ddots & \\
& & & & \sqrt{\lambda_{m}} &
\end{array}\right]\left[\begin{array}{ccccc}
\boldsymbol{v}_{11} & \boldsymbol{v}_{12} & \boldsymbol{v}_{13} & \ldots & \boldsymbol{v}_{1 n} \\
\boldsymbol{v}_{21} & \boldsymbol{v}_{22} & \boldsymbol{v}_{23} & \ldots & \boldsymbol{v}_{2 n} \\
v_{31} & v_{32} & v_{33} & \ldots & v_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
& \mathbf{2 \times 2} & & & \\
v_{n 1} & v_{n 2} & v_{n 3} & \ldots & v_{n n}
\end{array}\right]
$$

Learn more: overbye.engr.tamu.edu/wp-content/uploads/sites/146/2020/10/ECEN615_Fall2020_Lect17.pdf

