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8.7 Singular Values
Rectangular matrices do not have e-vals (why?).

Gram matrices K  ATA are square and symmetric for any A.

So how do the e-vals of K relate to A?

Definition: The singular value (s-val) 1, ,r of Amn are the positive square roots, i   i  0, of the

nonzero e-vals of the Gram matrix K  ATA. The corresponding e-vecs of K are known as the

singular vectors (s-vecs) of A.

But what if  i  0? It can’t happen, recall that Gram matrices K are positive semidefinite ( i  0),

which justifies positivity of s-vals of A (independently of whether A itself has positive, negative,

or even complex e-vals; or is rectangular and has no e-vals at all!).

We will label s-vals in decreasing order: 1  2  r  0.

Concretely: Let A 
3 5

4 0
. Observe: K  ATA 

3 4

5 0

3 5

4 0


25 15

15 25
.

K has 1  40, 2  10, and e-vecs: v 1  1,1, and v 2  1,1.

Thus, s-vals of A are 1  40  6.325 and 2  10  3.162 with s-vecs v 1, v 2.

In particular, A’s s-vals are not A’s e-vals, which are 1  6.217 and 2  3.217, nor are A’s s-vecs the e-vecs of A.

Indeed, the e-vecs of A are 0.8043,1 and 1. 554,1.

Proposition: If A  AT, then A’s s-vals are the absolute values of its nonzero e-vals: i  | i |  0.

Also, A’s s-vecs coincide with its non–null e-vecs.

Proof: When A is symmetric, K  ATA  A2.

So, if Av  v , then Kv  A2 v  Av   Av  2 v .



So,   2  ||  0.

Thus, every e-vec v of A is also an e-vec of K with K e-val 2. 

Also, observe that the e-vec basis of symmetric A (guaranteed by previous thm) is also an e-vec basis for K,

and hence forms a complete system of s-vecs for A.

Singular Value Decomposition (SVD)

Recall spectral (e-basis) factorization of symmetric matrices: A  QQ1  QQT.

We can generalize this to nonsymmetric matrices, this is known as singular value decomposition.

Theorem: A nonzero real Amn of rank r  0 can be factored,

A  PQT 

where Pmr has orthonormal columns, so PTP  I. The diagonal rr  diag1, ,r has the

s-vals of A as diagonal entries, and QT is r  n with orthonormal rows, so QTQ  I, where Q  q i

and the q i are orthonormal e-vecs of the Gram matrix K  AAT.

Proof: Let’s begin by rewriting  as AQ  P.

(this is allowed since the q i are the orthonormal e-vecs of K corresponding to the nonzero e-vals. So, Q is invertible)

The individual columns of this equation are: Aq i  ip i, where i  1, , r.  

This eq. relates orthonormal columns of Q  q 1, , q r to orthonormal columns of P  p 1, , p r .

Thus, our goal is to find orthonormal p 1, , p r.

Recall that the K e-vecs q i (according to a previous proposition), form a basis for imgK  coimgA

of dimension r  rankA.

Thus, by the definition of the s-vals: ATAq i  Kq i  i
2q i, where i  1, , r.   

We claim that the image vecs w i  Aq i are automatically orthogonal.

Indeed, in view of the orthonormality of the q i combined with   , we have:

w i  w j  w i
T
w j  Aq i

T
Aq j  q i

T
ATAq j



 q i
T
j
2q j  j

2q i
T
q j  j

2q i  q j 
0, i  j,

i
2, i  j.

Consequently, w1, ,wr form an orthogonal system of vecs having: w i  w i  w i  i.

So, the associated unit vecs: p i 
w i
i


Aq i
i

,    

where i  1, , r, form an orthonormal set of vecs.

Rearranging this equation, we find: Aq i  ip i, satisfying  . 

Corollary: A and AT have the same s-vals.

Proof: Observe that taking the transpose of  (and noting T   is diagonal), we obtain: AT  QPT,

which is a SVD of AT. 

Observe that the s-vecs are not the same. Indeed, those of A are the orthogonal columns of Q,

where as those of AT are the orthonormal columns of P.

The SVD serves to diagonalize the Gram matrix K. Indeed, since PTP  I, we have: QTKQ 

 QTATAQ

 QTATPPTAQ

 PTAQ
T
PTAQ  T  2.   (since A  PQT)

If A has rank n, then Q is an n  n orthogonal matrix and so   implies that the linear transformation of n

byK is diagonalized when expressed in terms of the orthonormal basis formed by the s-vecs.

Concretely: For A 
3 5

4 0
seen above, find SVD.

We had calculated K  ATA 
25 15

15 25
, with 1  40 and 2  10 .

Normalizing the K e-vecs found above gives orthonormal basis of A s-vecs: q 1 

1

2

1

2

, q 2 
 1

2

1

2

.



Thus, Q 

1

2
 1

2

1

2

1

2

.

Next, according to    , we have: p 1 
Aq 1
1

 1

40

4 2

2 2


2
5

1
5

,

p 2 
Aq 2
2

 1

10

2

2 2


1
5

 2
5

, and thus P 

2
5

1
5

1
5

 2
5

.

Checking my work: A 
3 5

4 0


2
5

1
5

1
5

 2
5

40 0

0 10

1

2

1

2

 1

2

1

2

 PQT. 

Proposition: Given the SVD A  PQT, the columns q 1, , q r of Q form an orthonormal

basis for coimgA,while the columns p 1, , p r of P form and orthonormal basis for imgA.

Proof: The first part of the proposition is automatic, since the q 1, , q r were defined to be the orthonormal

e-vecs of K  ATA, and therefore in coimgA, which has the same dimensions r as imgA.

Moreover, p i  A
q i
i

for i  1, , r were shown in the above proof to be mutually orthogonal,

of unit length, and belong to imgA . They therefore form an orthonormal basis for the image. 

For SVD (A  PQT), matrix QT represents an orthogonal projection from Rn to coimgA,

then  represents a stretching transformation within the r-dim subspace, while P maps the results to imgA  Rm.

A32 SVD when r  n.

We have finally reached a complete understanding of the subtle geometry underlying the simple operation of multiplying a
vector by a matrix!



Example: True/False? If A is symmetric, then its s-vals are the same as its e-vals.

False: i  | i |  0; its s-vecs coincide with its non-null e-vecs.

Example: True/False? The s-vals of A2 are the squares of the s-vals of A.

False: A2  PQT
2  PQTPQT . . . ??

Let: A 
0 1

0 0
. K1  ATA 

0 0

1 0

0 1

0 0


0 0

0 1
.   1.

Observe: A2 
0 0

0 0
. K2  A2

TA2 
0 0

0 0
. No S-vals!

The Pseudoinverse

Many matrices do not have an inverse, but we can generalize the idea of an inverse in a useful way.

Definition: The pseudoinverse of a nonzero m  n matrix with SVD A  PQT is

the n  m matrix A : Q1PT.

If Ann is nonsingular, then A  A1.

A1  PQT
1  Q1

T1P1  Q1PT  A.

But there is a quicker way:

Lemma: Let Amn have rank n. Then A  ATA
1AT.

Proof: Observe: ATA  PQT
T
PQT  QPTPQT  Q2QT,

since T is a diagonal matrix, and PTP  I.

This is spectral factorization of Gram matrix ATA—which we already knew from original definition of s-vals and s-vecs.

If A has rank n, then Q is n  n orthogonal. So Q1  QT.

Therefore, ATA
1AT  Q2QT

1
PQT

T

 Q2QTQPT



 Q1PT  A. 

Say we want to solve Ax  b . Rearranging, we want x such that Ax  b  0.

In real life, this often is not possible. So, instead we look for x that minimizes r : Ax  b .

This is known as the least squares solution to the linear system, because

r
2
 r1

2 rn2 is the sum of the squares of the individual error components.

Theorem: Consider Ax  b . Let x

 Ab . If ker A  0 , then x


is the (Euclidean)

least-squares solution to Ax  b . If, more generally, ker A  0 , then x

 Ab  coimgA

is the least-squares solution that has the minimal Euclidean norm ( x
  x ) among all x that

minimize the least-squares error Ax  b
2
.

Proof: Relies on a section we did not cover this semester.

Concretely: Find the pseudoinverse of A 

2 0

0 1

0 0

.

Observe that this 3  2 matrix has rankA  2. Therefore, the (quicker way) lemma above applies and:

A  ATA
1AT 

2 0 0

0 1 0

2 0

0 1

0 0

1

2 0 0

0 1 0


4 0

0 1

1
2 0 0

0 1 0


1
4 0

0 1

2 0 0

0 1 0


1
2 0 0

0 1 0
.

Now find the least-squares solution of Ax 

1

3

4

that has the minimal Euclidean norm ( x
  x ).



Ab 
1
2 0 0

0 1 0

1

3

4


 1

2

3
.

The Euclidean Matrix Norm

Theorem: Let ||2 denote the Euclidean norm on Rn. Let A be nonzero with s-vals 1  r.

Then, the Euclidean norm of A, defined as |A|2 : max Au
2
: u

2
 1 equals its

dominant (largest) s-val. So: max Au
2
: u

2
 1  1, while |O|2  0.

Proof: Note that we don’t need to prove the definition, only that max Au
2
: u

2
 1  1.

Let q 1, , q n be an orthonormal basis of Rn consisting of the s-vecs q 1, , q r along with

an orthonormal basis q r1, , q n of ker A.

Thus by a thm in sect 8.6 (not covered by this class), Aq i 
ip i, i  1, , r,

0, i  r  1, ,n
,

where p 1, , p r form and orthonormal basis for imgA.

Suppose u is any unit vector, so u  c1q 1 cnq n, where u  c1
2 cn2  1,

thanks to the orthonormality of the basis vecs and the Pythagorean formula. Then, Au  ??

Au  c11p 1 crrp r, and hence Au
2
 c1

21
2 cr2r

2 , since p 1, , p n are also orthonormal.

Now, since 1  2  r, we have Au
2
 c1

21
2 cr2r

2  c1
21

2 cr21
2  1 c1

2 cn2  1.

Moreover, if c1  1, c2  cn  0, then u  q 1, and hence Au
2
 Aq 1 2

 1p 1 2
 1.

This implies the desired formula. 

Concretely: Consider A 

0  1
3

1
3

1
4 0 1

2

2
5

1
5 0

. What is its Euclidean norm?

Gram matrix ATA 

89
400

2
25

1
8

2
25

34
225  1

9

1
8  1

9
13
36

has e-vals 1  0.447, 2  0.267, 3  0.021,



and hence the s-vals of A are their square roots: 1  0.669, 2  0.516, 3  0.145.

The Euclidean norm of A is the largest s-val, and so |A|2  0.669.

Condition Number and Rank

Not only do s-vals provide a compelling geometric interpretation of the action of a matrix on a vector, s-vals also play a role in
computer algorithms.

The magnitudes of s-vals can be used to distinguish a well behaved linear system from ill-conditioned ones, which are more
challenging to solve accurately.

This information is quantified by the condition number  of a matrix.

[see animation in class]

Definition: The condition number  of a nonsingular n  n matrix is the ratio between its largest and smallest

s-vals: A  1
n
.

Since the number of s-vals equals the matrix’s rank, an n  n matrix with fewer than n s-vals is singular, and is said to have
condition number .

A matrix with a very large condition number is close to singular, and is designated as ill-conditioned.

In practical terms, this occurs when the condition number is larger than the reciprocal of the machine’s precision, e.g., 10 7.

It is much harder to solve Ax  b when its coefficient matrix is ill-conditioned, and hence close to singular.

Theorem: Let Amn have rank r and SVD A  PQT.

Given 1  k  r, let k denote the upper left k  k diagonal submatrix of  containing the largest k s-vals on  s diagonal.

Let Qk be n  k formed from the first k columns of Q, which are the first k orthonormal

s-vecs of A, and let Pk be m  k formed from the first k columns of P.

Then m  n matrix Ak  PkkQk
T has rank k. Moreover, Ak is the closest rank k matrix to A in the sense that,

among all m  n matrices B of rank k, the Euclidean matrix norm |A  B| is minimized when B  Ak.



Proof in book.

Can’t do better than this with matrix of lower rank: |A  B| is minimized when B  Ak among all matrices with rankB  k.

So, when solving ill-conditioned Ax  b , a strategy is to eliminate "insignificant" s-vals below a cut off, replacing A by Ak.

Applying the corresponding approximating pseudoinverse Ak
  Qkk

1Pk
T to solve for x


 Ak

b will usually circumvent

the effects of ill-conditioning.

Image Compression
How do computers store images?

Divide an image into pixels, n pixels wide, and m pixels high. This gives us an Amn matrix.

But how do we define each matrix component?

Pixel: Each color can be defined by some mixture of red/blue/green.

Mathematically, we will use hexadecimals {0,1, , 9,A,B, ,F}.

So, let each color be two digits, this gives us 16  16  256 shades of each color (where 00  black and FF  white).

And with three primary colors, this gives us 2563  16 ,777,216 numbers (colors) per pixel.



For a 100  100 pixel image, you must store 10, 000  2563  168 billion choices of color.

For a 1280  720 pixel image (HD standard), that is 1280  720  2563  15.5 trillion choices of color,

takes up a lot of resources!

There must be a different way, right?

The Different Way

Throw away the less relevant data.

Recall (?) from dynamical systems that there are e-val/e-vec pairs that dominate the behavior of the system.

That is, the ones associated with the e-vals of greatest magnitude.

Example: if  i,v i  10, v 1, 5, v 2,
1,
2 v 3 for a discrete dynamical system,

then for most initial states, what’s the long-term behavior of the system? ...

Grows without bound, parallel to v 1.

But the image matrix above won’t be square (needed for e-vals), so we need SVD: A  PQT.

This allows us to compress data by only using the first k columns of P, the upper left k  k submatrix of ,

and the first k rows of QT.

A 

u11 u12 u13  u1m

u21 u22 u23  u2m

u31 u32 u33  u3m

    

um1 um2 um3  umm

1

2

3



m

v11 v12 v13  v1n

v21 v22 v23  v2n

v31 v32 v33  v3n

    

vn1 vn2 vn3  vnn

m  2 2  2 2  n



1 

5  s

15  s

20  s

All  s (Original)

Learn more: overbye.engr.tamu.edu/wp-content/uploads/sites/146/2020/10/ECEN615_Fall2020_Lect17.pdf


