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8.7 Singular Values
Rectangular matrices do not have e-vals (why?).

Gram matrices K  ATA are square and symmetric for any A.

So how do the e-vals of K relate to A?

Definition: The singular value (s-val) 1, ,r of Amn are the positive square roots, i   i  0, of the

nonzero e-vals of the Gram matrix K  ATA. The corresponding e-vecs of K are known as the

singular vectors (s-vecs) of A.

But what if  i  0? It can’t happen, recall that Gram matrices K are positive semidefinite ( i  0),

which justifies positivity of s-vals of A (independently of whether A itself has positive, negative,

or even complex e-vals; or is rectangular and has no e-vals at all!).

We will label s-vals in decreasing order: 1  2  r  0.

Concretely: Let A 
3 5

4 0
. Observe: K  ATA 
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.

K has 1  40, 2  10, and e-vecs: v 1  1,1, and v 2  1,1.

Thus, s-vals of A are 1  40  6.325 and 2  10  3.162 with s-vecs v 1, v 2.

In particular, A’s s-vals are not A’s e-vals, which are 1  6.217 and 2  3.217, nor are A’s s-vecs the e-vecs of A.

Indeed, the e-vecs of A are 0.8043,1 and 1. 554,1.

Proposition: If A  AT, then A’s s-vals are the absolute values of its nonzero e-vals: i  | i |  0.

Also, A’s s-vecs coincide with its non–null e-vecs.

Proof: When A is symmetric, K  ATA  A2.

So, if Av  v , then Kv  A2 v  Av   Av  2 v .



So,   2  ||  0.

Thus, every e-vec v of A is also an e-vec of K with K e-val 2. 

Also, observe that the e-vec basis of symmetric A (guaranteed by previous thm) is also an e-vec basis for K,

and hence forms a complete system of s-vecs for A.

Singular Value Decomposition (SVD)

Recall spectral (e-basis) factorization of symmetric matrices: A  QQ1  QQT.

We can generalize this to nonsymmetric matrices, this is known as singular value decomposition.

Theorem: A nonzero real Amn of rank r  0 can be factored,

A  PQT 

where Pmr has orthonormal columns, so PTP  I. The diagonal rr  diag1, ,r has the

s-vals of A as diagonal entries, and QT is r  n with orthonormal rows, so QTQ  I, where Q  q i

and the q i are orthonormal e-vecs of the Gram matrix K  AAT.

Proof: Let’s begin by rewriting  as AQ  P.

(this is allowed since the q i are the orthonormal e-vecs of K corresponding to the nonzero e-vals. So, Q is invertible)

The individual columns of this equation are: Aq i  ip i, where i  1, , r.  

This eq. relates orthonormal columns of Q  q 1, , q r to orthonormal columns of P  p 1, , p r .

Thus, our goal is to find orthonormal p 1, , p r.

Recall that the K e-vecs q i (according to a previous proposition), form a basis for imgK  coimgA

of dimension r  rankA.

Thus, by the definition of the s-vals: ATAq i  Kq i  i
2q i, where i  1, , r.   

We claim that the image vecs w i  Aq i are automatically orthogonal.

Indeed, in view of the orthonormality of the q i combined with   , we have:

w i  w j  w i
T
w j  Aq i

T
Aq j  q i

T
ATAq j



 q i
T
j
2q j  j

2q i
T
q j  j

2q i  q j 
0, i  j,

i
2, i  j.

Consequently, w1, ,wr form an orthogonal system of vecs having: w i  w i  w i  i.

So, the associated unit vecs: p i 
w i
i


Aq i
i

,    

where i  1, , r, form an orthonormal set of vecs.

Rearranging this equation, we find: Aq i  ip i, satisfying  . 

Corollary: A and AT have the same s-vals.

Proof: Observe that taking the transpose of  (and noting T   is diagonal), we obtain: AT  QPT,

which is a SVD of AT. 

Observe that the s-vecs are not the same. Indeed, those of A are the orthogonal columns of Q,

where as those of AT are the orthonormal columns of P.

The SVD serves to diagonalize the Gram matrix K. Indeed, since PTP  I, we have: QTKQ 

 QTATAQ

 QTATPPTAQ

 PTAQ
T
PTAQ  T  2.   (since A  PQT)

If A has rank n, then Q is an n  n orthogonal matrix and so   implies that the linear transformation of n

byK is diagonalized when expressed in terms of the orthonormal basis formed by the s-vecs.

Concretely: For A 
3 5

4 0
seen above, find SVD.

We had calculated K  ATA 
25 15

15 25
, with 1  40 and 2  10 .

Normalizing the K e-vecs found above gives orthonormal basis of A s-vecs: q 1 
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2

1

2

, q 2 
 1

2

1

2

.



Thus, Q 
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Next, according to    , we have: p 1 
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,

p 2 
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, and thus P 
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Checking my work: A 
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 PQT. 

Proposition: Given the SVD A  PQT, the columns q 1, , q r of Q form an orthonormal

basis for coimgA,while the columns p 1, , p r of P form and orthonormal basis for imgA.

Proof: The first part of the proposition is automatic, since the q 1, , q r were defined to be the orthonormal

e-vecs of K  ATA, and therefore in coimgA, which has the same dimensions r as imgA.

Moreover, p i  A
q i
i

for i  1, , r were shown in the above proof to be mutually orthogonal,

of unit length, and belong to imgA . They therefore form an orthonormal basis for the image. 

For SVD (A  PQT), matrix QT represents an orthogonal projection from Rn to coimgA,

then  represents a stretching transformation within the r-dim subspace, while P maps the results to imgA  Rm.

A32 SVD when r  n.

We have finally reached a complete understanding of the subtle geometry underlying the simple operation of multiplying a
vector by a matrix!



Example: True/False? If A is symmetric, then its s-vals are the same as its e-vals.

False: i  | i |  0; its s-vecs coincide with its non-null e-vecs.

Example: True/False? The s-vals of A2 are the squares of the s-vals of A.

False: A2  PQT
2  PQTPQT . . . ??

Let: A 
0 1

0 0
. K1  ATA 

0 0

1 0

0 1

0 0


0 0

0 1
.   1.

Observe: A2 
0 0

0 0
. K2  A2

TA2 
0 0

0 0
. No S-vals!

The Pseudoinverse

Many matrices do not have an inverse, but we can generalize the idea of an inverse in a useful way.

Definition: The pseudoinverse of a nonzero m  n matrix with SVD A  PQT is

the n  m matrix A : Q1PT.

If Ann is nonsingular, then A  A1.

A1  PQT
1  Q1

T1P1  Q1PT  A.

But there is a quicker way:

Lemma: Let Amn have rank n. Then A  ATA
1AT.

Proof: Observe: ATA  PQT
T
PQT  QPTPQT  Q2QT,

since T is a diagonal matrix, and PTP  I.

This is spectral factorization of Gram matrix ATA—which we already knew from original definition of s-vals and s-vecs.

If A has rank n, then Q is n  n orthogonal. So Q1  QT.

Therefore, ATA
1AT  Q2QT

1
PQT

T

 Q2QTQPT



 Q1PT  A. 

Say we want to solve Ax  b . Rearranging, we want x such that Ax  b  0.

In real life, this often is not possible. So, instead we look for x that minimizes r : Ax  b .

This is known as the least squares solution to the linear system, because

r
2
 r1

2 rn2 is the sum of the squares of the individual error components.

Theorem: Consider Ax  b . Let x

 Ab . If ker A  0 , then x


is the (Euclidean)

least-squares solution to Ax  b . If, more generally, ker A  0 , then x

 Ab  coimgA

is the least-squares solution that has the minimal Euclidean norm ( x
  x ) among all x that

minimize the least-squares error Ax  b
2
.

Proof: Relies on a section we did not cover this semester.

Concretely: Find the pseudoinverse of A 

2 0

0 1

0 0

.

Observe that this 3  2 matrix has rankA  2. Therefore, the (quicker way) lemma above applies and:

A  ATA
1AT 

2 0 0

0 1 0
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0 0

1
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1
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Now find the least-squares solution of Ax 

1

3

4

that has the minimal Euclidean norm ( x
  x ).



Ab 
1
2 0 0

0 1 0
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3
.

The Euclidean Matrix Norm

Theorem: Let ||2 denote the Euclidean norm on Rn. Let A be nonzero with s-vals 1  r.

Then, the Euclidean norm of A, defined as |A|2 : max Au
2
: u

2
 1 equals its

dominant (largest) s-val. So: max Au
2
: u

2
 1  1, while |O|2  0.

Proof: Note that we don’t need to prove the definition, only that max Au
2
: u

2
 1  1.

Let q 1, , q n be an orthonormal basis of Rn consisting of the s-vecs q 1, , q r along with

an orthonormal basis q r1, , q n of ker A.

Thus by a thm in sect 8.6 (not covered by this class), Aq i 
ip i, i  1, , r,

0, i  r  1, ,n
,

where p 1, , p r form and orthonormal basis for imgA.

Suppose u is any unit vector, so u  c1q 1 cnq n, where u  c1
2 cn2  1,

thanks to the orthonormality of the basis vecs and the Pythagorean formula. Then, Au  ??

Au  c11p 1 crrp r, and hence Au
2
 c1

21
2 cr2r

2 , since p 1, , p n are also orthonormal.

Now, since 1  2  r, we have Au
2
 c1

21
2 cr2r

2  c1
21

2 cr21
2  1 c1

2 cn2  1.

Moreover, if c1  1, c2  cn  0, then u  q 1, and hence Au
2
 Aq 1 2

 1p 1 2
 1.

This implies the desired formula. 

Concretely: Consider A 

0  1
3

1
3

1
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2

2
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1
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. What is its Euclidean norm?

Gram matrix ATA 

89
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2
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1
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has e-vals 1  0.447, 2  0.267, 3  0.021,



and hence the s-vals of A are their square roots: 1  0.669, 2  0.516, 3  0.145.

The Euclidean norm of A is the largest s-val, and so |A|2  0.669.

Condition Number and Rank

Not only do s-vals provide a compelling geometric interpretation of the action of a matrix on a vector, s-vals also play a role in
computer algorithms.

The magnitudes of s-vals can be used to distinguish a well behaved linear system from ill-conditioned ones, which are more
challenging to solve accurately.

This information is quantified by the condition number  of a matrix.

[see animation in class]

Definition: The condition number  of a nonsingular n  n matrix is the ratio between its largest and smallest

s-vals: A  1
n
.

Since the number of s-vals equals the matrix’s rank, an n  n matrix with fewer than n s-vals is singular, and is said to have
condition number .

A matrix with a very large condition number is close to singular, and is designated as ill-conditioned.

In practical terms, this occurs when the condition number is larger than the reciprocal of the machine’s precision, e.g., 10 7.

It is much harder to solve Ax  b when its coefficient matrix is ill-conditioned, and hence close to singular.

Theorem: Let Amn have rank r and SVD A  PQT.

Given 1  k  r, let k denote the upper left k  k diagonal submatrix of  containing the largest k s-vals on  s diagonal.

Let Qk be n  k formed from the first k columns of Q, which are the first k orthonormal

s-vecs of A, and let Pk be m  k formed from the first k columns of P.

Then m  n matrix Ak  PkkQk
T has rank k. Moreover, Ak is the closest rank k matrix to A in the sense that,

among all m  n matrices B of rank k, the Euclidean matrix norm |A  B| is minimized when B  Ak.



Proof in book.

Can’t do better than this with matrix of lower rank: |A  B| is minimized when B  Ak among all matrices with rankB  k.

So, when solving ill-conditioned Ax  b , a strategy is to eliminate "insignificant" s-vals below a cut off, replacing A by Ak.

Applying the corresponding approximating pseudoinverse Ak
  Qkk

1Pk
T to solve for x


 Ak

b will usually circumvent

the effects of ill-conditioning.

Image Compression
How do computers store images?

Divide an image into pixels, n pixels wide, and m pixels high. This gives us an Amn matrix.

But how do we define each matrix component?

Pixel: Each color can be defined by some mixture of red/blue/green.

Mathematically, we will use hexadecimals {0,1, , 9,A,B, ,F}.

So, let each color be two digits, this gives us 16  16  256 shades of each color (where 00  black and FF  white).

And with three primary colors, this gives us 2563  16 ,777,216 numbers (colors) per pixel.



For a 100  100 pixel image, you must store 10, 000  2563  168 billion choices of color.

For a 1280  720 pixel image (HD standard), that is 1280  720  2563  15.5 trillion choices of color,

takes up a lot of resources!

There must be a different way, right?

The Different Way

Throw away the less relevant data.

Recall (?) from dynamical systems that there are e-val/e-vec pairs that dominate the behavior of the system.

That is, the ones associated with the e-vals of greatest magnitude.

Example: if  i,v i  10, v 1, 5, v 2,
1,
2 v 3 for a discrete dynamical system,

then for most initial states, what’s the long-term behavior of the system? ...

Grows without bound, parallel to v 1.

But the image matrix above won’t be square (needed for e-vals), so we need SVD: A  PQT.

This allows us to compress data by only using the first k columns of P, the upper left k  k submatrix of ,

and the first k rows of QT.

A 

u11 u12 u13  u1m

u21 u22 u23  u2m

u31 u32 u33  u3m
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v31 v32 v33  v3n

    

vn1 vn2 vn3  vnn

m  2 2  2 2  n
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All  s (Original)

Learn more: overbye.engr.tamu.edu/wp-content/uploads/sites/146/2020/10/ECEN615_Fall2020_Lect17.pdf


