Instructor: Jodin Morey moreyjc@umn.edu

8.5 Eigenvalues of Symmetric Matrices

Good news, most matrices found in application are symmetric, AND have e-vecs which form an orthogonal basis for the underlying space (complete). Let's see what else this gives us:

Theorem: Let $\mathbf{A} = \mathbf{A}^T$ be a real symmetric $n \times n$ matrix. Then,

- a) All the e-vals of **A** are *real*
- b) E-vecs corresponding to *distinct* e-vals are *orthogonal*.
- c) There's an orthonormal basis of \mathbb{R}^n consisting of *n* e-vecs of **A**.

In particular, all real symmetric matrices are *complete* and real *diagonalizable*.

Proof quite long, in book.

Concretely: Find an orthonormal basis of
$$\mathbb{R}^n$$
 given $\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, that has $\lambda_1 = 4$, $\lambda_2 = 2$ and $\vec{v}_1 = (1, 1)$, $\vec{v}_2 = (-1, 1)$.

Note **A** is symmetric. So, it is easily checked that $\vec{v}_1 \cdot \vec{v}_2 = 0$.

To get the orthonormal basis, we need only normalize the \vec{v}_i : $\vec{u}_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \ \vec{u}_2 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$

Theorem: A symmetric $\mathbf{K} = \mathbf{K}^T$ is positive definite **iff** all of its e-vals are strictly positive.

Proof: (\Rightarrow) First, if $\mathbf{K} > 0$, then, by definition, $\vec{x}^T \mathbf{K} \vec{x} > 0$ for all nonzero $\vec{x} \in \mathbb{R}^n$.

In particular, if $\vec{x} = \vec{v} \neq \vec{0}$ is an e-vec with (necessarily real) e-val λ , then

$$0 < \vec{v}^T \mathbf{K} \vec{v} = \vec{v}^T (\lambda \vec{v}) = \lambda \vec{v}^T \vec{v} = \lambda |\vec{v}|^2,$$

which immediately proves $\lambda > 0$.

Conversely (\Leftarrow), suppose **K** has all positive e-vals. Let $\vec{u}_1, \dots, \vec{u}_n$ be the orthonormal e-vec basis guaranteed by the previous thm, with $\mathbf{K}\vec{u}_j = \lambda_j\vec{u}_j$ where $\lambda_j > 0$.

Writing $\vec{x} = c_1 \vec{u}_1 + \ldots + c_n \vec{u}_n$, we obtain $\mathbf{K} \vec{x} = c_1 \lambda_1 \vec{u}_1 + \ldots + c_n \lambda_n \vec{u}_n$.

Therefore, using orthonormality of the e-vecs:

$$\vec{x}^T \mathbf{K} \vec{x} = \left(c_1 \vec{u}_1^T + \ldots + c_n \vec{u}_n^T\right) \left(c_1 \lambda_1 \vec{u}_1 + \ldots + c_n \lambda_n \vec{u}_n\right) = \lambda_1 c_1^2 + \ldots + \lambda_n c_n^2.$$

Note this last expression is greater then zero whenever $\vec{x} \neq 0$,

since only $\vec{x} = \vec{0}$ has coordinates $c_1 = ... = c_n = 0$. This establishes $\mathbf{K} > \mathbf{0}$.

Proposition: Let $\mathbf{A} = \mathbf{A}^T$ be $n \times n$, symmetric. Let $\vec{v}_1, \dots, \vec{v}_n$ be an orthogonal e-vec basis such that $\vec{v}_1, \dots, \vec{v}_r$ correspond to nonzero e-vals, while $\vec{v}_{r+1}, \dots, \vec{v}_n$ are null e-vecs corresponding to the zero e-val (if any). Then $r = rank\mathbf{A}$; the non-null e-vecs $\vec{v}_1, \dots, \vec{v}_r$ form an orthogonal basis for $img\mathbf{A} = coimg\mathbf{A}$, while the null e-vecs $\vec{v}_{r+1}, \dots, \vec{v}_n$ form an orthogonal basis for ker $\mathbf{A} = co \ker \mathbf{A}$.

Proof: The zero e-space coincides with kernel: $V_0 = \ker(\mathbf{A} - \mathbf{0I}) = \ker \mathbf{A}$.

Thus, the linearly independent null e-vecs form a basis for ker **A**, which has dimension n - r where r = rank **A**. Moreover, the remaining *r* non-null e-vecs are (by prev. thm) orthogonal to the null e-vecs. Therefore, they must form a basis for the kernel's orthogonal complement, namely coimg **A** = img **A**. (since **A** = **A**^{*T*})

Example: Determine whether $\begin{bmatrix} 4 & -1 & -2 \\ -1 & 4 & -1 \\ -2 & -1 & 4 \end{bmatrix}$ is positive definite by computing its e-vals.

Validate your conclusions by using the methods learned previously in the course.

Observe the symmetry. Then: $\begin{vmatrix} 4-\lambda & -1 & -2 \\ -1 & 4-\lambda & -1 \\ -2 & -1 & 4-\lambda \end{vmatrix} = \begin{vmatrix} 4-\lambda & -1 & -2 \\ -1 & 4-\lambda & -1 \\ 0 & 2\lambda-9 & 6-\lambda \end{vmatrix}$

 $= (4 - \lambda)((4 - \lambda)(6 - \lambda) - (9 - 2\lambda)) - (-1)(-(6 - \lambda) - (-2)(2\lambda - 9)) = -\lambda^3 + 12\lambda^2 - 42\lambda + 36.$

Note the factors of (the constant term) 36 are $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 13, \pm 36\}$.

Try these as possible solutions until eventually, finding $\lambda = 6$.

Polynomial division by $(\lambda - 6)$.

$$-\lambda^{3} + 12\lambda^{2} - 42\lambda + 36 = (\lambda - 6)(-\lambda^{2}) + (6\lambda^{2} - 42\lambda + 36) = (\lambda - 6)(-\lambda^{2}) + (\lambda - 6)(6\lambda) + (-6\lambda + 36)$$
$$= (\lambda - 6)(-\lambda^{2}) + (\lambda - 6)(6\lambda) - 6(\lambda - 6).$$

So, $-\lambda^3 + 12\lambda^2 - 42\lambda + 36 = (\lambda - 6)(-\lambda^2 + 6\lambda - 6),$

and $\lambda \in \{6, 3 \pm \sqrt{3}\} \approx \{6, 1.27, 4.73\}.$ (quadratic formula)

Pos e-vals, so pos def. Verify w/ "other method in course"?

Recall, a symmetric matrix is positive definite iff it is regular and has all positive pivots.

4 -1 -2	4 -1 -2	Γ	4 -1 -2]
-1 4 -1 \rightarrow	$0 \frac{15}{4} - \frac{3}{2}$	\rightarrow	$0 \frac{15}{4} - \frac{3}{2}$, so pos def.
$\left[\begin{array}{rrrr} 4 & -1 & -2 \\ -1 & 4 & -1 \\ -2 & -1 & 4 \end{array}\right] \rightarrow$	0 -9 6		$0 0 \frac{16}{5}$	

The Spectral Theorem

The previous section told us that a real symmetric matrix produces an e-basis for the space, and is therefore diagonalizable. Furthermore, since we can choose those e-vecs such that they are of unit length, we have the following:

Theorem: Let **A** be real, symmetric. Then there exists an orthogonal **Q** such that $\mathbf{A} = \mathbf{Q}\mathbf{A}\mathbf{Q}^{-1} = \mathbf{Q}\mathbf{A}\mathbf{Q}^{T}$, where $\mathbf{\Lambda}$ is real/diagonal. The e-vals of **A** appear on the diagonal of $\mathbf{\Lambda}$, while the columns of **Q** are the corresponding orthonormal e-vecs.

 $\mathbf{Q} \mathbf{A} = \mathbf{Q} \mathbf{A} \mathbf{Q}^{-1}$ is not the same as $\mathbf{A} = \mathbf{L} \mathbf{D} \mathbf{L}^{-1}$ (the latter produced from row reduction method).

The spectral factorization provides us an alternative means of diagonalizing the associated quadratic form $q(\vec{x}) = \vec{x}^T \mathbf{A} \vec{x}$.

That is, a means for completing the square.

Observe (for real symmetric A):
$$q(\vec{x}) = \vec{x}^T \mathbf{A} \vec{x} = \vec{x}^T \mathbf{Q} \mathbf{A} \mathbf{Q}^{-1} \vec{x} = \vec{y}^T \mathbf{A} \vec{y} = \sum_{i=1}^n \lambda_i y_i^2$$

where $\vec{y} = \mathbf{Q}^T \vec{x} = \mathbf{Q}^{-1} \vec{x}$ are the coords of \vec{x} with respect to the orthonormal e-vec basis of A.

In particular, $q(\vec{x}) > 0$ for all $\vec{x} \neq \vec{0}$ and so A is positive definite **iff** each e-val is strictly positive,

reconfirming our previous thm.

Example: Construct a symmetric **A** with the following e-vecs and e-vals, or explain why none exists: $\lambda_1 = -2$, $\vec{v}_1 = (1,-1)$ and $\lambda_2 = 1$, $\vec{v}_2 = (1,1)$.

It's diagonalizable (real, symmetric, so two e-vecs), and forming $\mathbf{Q}\mathbf{A}\mathbf{Q}^{-1}$, we have:

$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -\frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}.$