Applied Linear Algebra

Instructor: Jodin Morey = moreyjc@umn.edu

8.5 Eigenvalues of Symmetric Matrices

Good news, most matrices found in application are symmetric, AND have e-vecs which form an orthogonal basis for the
underlying space (complete). Let’s see what else this gives us:

Theorem: Let A = A7 be a real symmetric # x n matrix. Then,
a) All the e-vals of A are real
b) E-vecs corresponding to distinct e-vals are orthogonal.
c) There’s an orthonormal basis of R” consisting of n e-vecs of A.

In particular, all real symmetric matrices are complete and real diagonalizable.

Proof quite long, in book.
. ) . 31 R R
Concretely: Find an orthonormal basis of R” given A = s thathas A} = 4,4, =2and v, = (1,1), v, = (-1,1).

Note A is symmetric. So, it is easily checked that V| « V, = 0.
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To get the orthonormal basis, we need only normalize the v;: 1 ( 5 ), Us ( 57 )
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Theorem: A symmetric K = K7 is positive definite iff all of its e-vals are strictly positive.
Proof: (=) First, if K > 0, then, by definition, ¥’ K% > 0 for all nonzero ¥ € R”.
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In particular, if ¥ = V # 0 is an e-vec with (necessarily real) e-val A, then
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0 < V'KV =3 (A7) = 37 = 4|7,

which immediately proves A > 0.

Conversely (<), suppose K has all positive e-vals. Let 7/1,...,%, be the

orthonormal e-vec basis guaranteed by the previous thm, with Ku; = 1,1; where 1; > 0.
Writing X = c1%1 +...+Cntln, we obtain KX = ¢ 41701 +... +Cpdntln.

Therefore, using orthonormality of the e-vecs:
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X KX = (cﬂ’l +...+c,,7,,>(cl/1171 oA Ca A Un) = Aict .. A AaCl.
Note this last expression is greater then zero whenever X # 0,
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since only ¥ = 0 has coordinates ¢; =...= ¢, = 0. This establishes K > 0. |
Proposition: Let A = A” be n x n, symmetric. Let V1, ..., 7V, be an orthogonal e-vec basis such that
V1,...,V, correspond to nonzero e-vals, while V,,1,...,V, are null e-vecs corresponding to the
zero e-val (if any). Then r = rank A; the non-null e-vecs V1, ..., V, form an orthogonal basis
for img A = coimg A, while the null e-vecs V.1, ...,V , form an orthogonal basis for ker A = coker A.
Proof: The zero e-space coincides with kernel: Vo=ker(A — 0I) = ker A.

Thus, the linearly independent null e-vecs form a basis for ker A, which has dimension n — » where r = rank A.

Moreover, the remaining » non-null e-vecs are (by prev. thm) orthogonal to the null e-vecs. Therefore, they must

form a basis for the kernel’s orthogonal complement, namely coimg A = imgA. (sinceA = ATy H
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Example: Determine whether | -1 4 -1 is positive definite by computing its e-vals.
-2 -1 4

Validate your conclusions by using the methods learned previously in the course.

4-2 -1 -2 4-1 -1 -2
Observe the symmetry. Then:| -1 4-1 -1 = -1 4-1 -1
-2 -1 4-2 0 24-9 6-4
=@-DE-1)6-1)-0-21) —(-1)(=6-21)-(-2)21-9)) = —A°+ 124> —421 + 36.

Note the factors of (the constant term) 36 are {+1,£2,4+3,+4,+6,49,+13,+36}.

Try these as possible solutions until eventually, finding A = 6.

Polynomial division by (1 — 6).

A3 41242 — 420436 = (L — 6)(=A2) + (642 — 424 +36) = (A — 6)(=A2) + (L — 6)(61) + (=61 + 36)
= (A= 6)(=12) + (A — 6)(6) — 6(A — 6).



So, A3 + 1242 — 424 + 36 = (L — 6)(—A2 + 61— 6),

and 1 € {6,3+,/3} ~ {6,1.27, 4.73}. (quadratic formula)

Pos e-vals, so pos def. Verify w/ "other method in course"?

Recall, a symmetric matrix is positive definite iff it is regular and has all positive pivots.

4 -1 2 4 -1 2 4 -1 2
-1 4 -1 |—>| 0o L& 2 — | 0 & -3 | s0pos def.
-2 -1 4 0 -9 o6 0 0 %

The Spectral Theorem

The previous section told us that a real symmetric matrix produces an e-basis for the space, and is therefore diagonalizable.
Furthermore, since we can choose those e-vecs such that they are of unit length, we have the following:

Theorem: Let A be real, symmetric. Then there exists an orthogonal Q such that A = QAQ™' = QAQ7,

where A is real/diagonal. The e-vals of A appear on the diagonal of A, while the columns of Q are

the corresponding orthonormal e-vecs.
0 A = QAQ™! isnot the same as A = LDL™! (the latter produced from row reduction method).

The spectral factorization provides us an alternative means of diagonalizing the associated quadratic form g(¥) = ?AR.

That is, a means for completing the square.

Observe (for real symmetric A): ¢(¥) = ¥ AX = ¥ QAQ'¥ = ¥'AY = Do AT,

where 7 = Q7Y = Q'Y are the coords of X with respect to the orthonormal e-vec basis of A.

In particular, g(¥) > 0 for all ¥ + 0 and so A is positive definite iff each e-val is strictly positive,

reconfirming our previous thm.

Example: Construct a symmetric A with the following e-vecs and e-vals, or explain why none exists:

ﬂl = —2, 71 = (1,—1) and 12 = 1, 72 = (1,1)

It’s diagonalizable (real, symmetric, so two e-vecs), and forming QAQ ™', we have:






