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8.5 Eigenvalues of Symmetric Matrices
Good news, most matrices found in application are symmetric, AND have e-vecs which form an orthogonal basis for the
underlying space (complete). Let’s see what else this gives us:

Theorem: Let A  AT be a real symmetric n  n matrix. Then,

a) All the e-vals of A are real

b) E-vecs corresponding to distinct e-vals are orthogonal.

c) There’s an orthonormal basis of Rn consisting of n e-vecs of A.

In particular, all real symmetric matrices are complete and real diagonalizable.

Proof quite long, in book.

Concretely: Find an orthonormal basis of Rn given A 
3 1

1 3
, that has 1  4, 2  2 and v 1  1,1, v 2  1,1.

Note A is symmetric. So, it is easily checked that v 1  v 2  0.

To get the orthonormal basis, we need only normalize the v i: u 1  1

2
, 1

2
, u 2   1

2
, 1

2
.

Theorem: A symmetric K  KT is positive definite iff all of its e-vals are strictly positive.

Proof: () First, if K  0, then, by definition, x
T
Kx  0 for all nonzero x  Rn.

In particular, if x  v  0 is an e-vec with (necessarily real) e-val , then

0  v
T
Kv  v

T
v   v

T
v   v

2
,

which immediately proves   0.

Conversely (), suppose K has all positive e-vals. Let u 1, , u n be the

orthonormal e-vec basis guaranteed by the previous thm, with Ku j   ju j where  j  0.

Writing x  c1u 1 cnu n, we obtain Kx  c11u 1 cnnu n.

Therefore, using orthonormality of the e-vecs:



x
T
Kx  c1u 1

T
cnu n

T
c11u 1 cnnu n  1c1

2 ncn
2.

Note this last expression is greater then zero whenever x  0,

since only x  0 has coordinates c1  cn  0. This establishes K  0. 

Proposition: Let A  AT be n  n, symmetric. Let v 1, , v n be an orthogonal e-vec basis such that

v 1, , v r correspond to nonzero e-vals, while v r1, , v n are null e-vecs corresponding to the

zero e-val (if any). Then r  rankA; the non-null e-vecs v 1, , v r form an orthogonal basis

for imgA  coimgA, while the null e-vecs v r1, , v n form an orthogonal basis for ker A  coker A.

Proof: The zero e-space coincides with kernel: V0kerA  0I  kerA.

Thus, the linearly independent null e-vecs form a basis for kerA, which has dimension n  r where r  rankA.

Moreover, the remaining r non-null e-vecs are (by prev. thm) orthogonal to the null e-vecs. Therefore, they must

form a basis for the kernel’s orthogonal complement, namely coimgA  imgA. (since A  AT) 

Example: Determine whether

4 1 2

1 4 1

2 1 4

is positive definite by computing its e-vals.

Validate your conclusions by using the methods learned previously in the course.

Observe the symmetry. Then:

4   1 2

1 4   1

2 1 4  



4   1 2

1 4   1

0 2  9 6  

 4  4  6    9  2  16    22  9   3  122  42  36.

Note the factors of (the constant term) 36 are 1,2,3,4,6,9,13,36.

Try these as possible solutions until eventually, finding   6.

Polynomial division by   6.

 3  122  42  36    62  62  42  36    62    66  6  36

   62    66  6  6.



So, 3  122  42  36    62  6  6,

and   6, 3  3   6,1.27, 4.73. (quadratic formula)

Pos e-vals, so pos def. Verify w/ "other method in course"?

Recall, a symmetric matrix is positive definite iff it is regular and has all positive pivots.

4 1 2

1 4 1

2 1 4



4 1 2

0 15
4  3

2

0 9 6



4 1 2

0 15
4  3

2

0 0 16
5

, so pos def.

The Spectral Theorem
The previous section told us that a real symmetric matrix produces an e-basis for the space, and is therefore diagonalizable.
Furthermore, since we can choose those e-vecs such that they are of unit length, we have the following:

Theorem: Let A be real, symmetric. Then there exists an orthogonal Q such that A  QQ1  QQT,

where  is real/diagonal. The e-vals of A appear on the diagonal of , while the columns of Q are

the corresponding orthonormal e-vecs.

A  QQ1 is not the same as A  LDL1 (the latter produced from row reduction method).

The spectral factorization provides us an alternative means of diagonalizing the associated quadratic form qx   x
T
Ax .

That is, a means for completing the square.

Observe (for real symmetric A): qx   x
T
Ax  x

T
QQ1 x  y

T
y   i1

n  iy i
2,

where y  QT x  Q1 x are the coords of x with respect to the orthonormal e-vec basis of A.

In particular, qx   0 for all x  0 and so A is positive definite iff each e-val is strictly positive,

reconfirming our previous thm.

Example: Construct a symmetric A with the following e-vecs and e-vals, or explain why none exists:

1  2, v 1  1,1 and 2  1, v 2  1,1.

It’s diagonalizable (real, symmetric, so two e-vecs), and forming QQ1, we have:



A 
1 1

1 1

2 0

0 1

1 1

1 1

1


 1

2
3
2

3
2  1

2

.


