Applied Linear Algebra

8.5 Eigenvalues of Symmetric Matrices

Good news, most matrices found in application are symmetric, AND have e-vecs which form an orthogonal basis for the underlying space (complete). Let's see what else this gives us:
Theorem: Let $\mathbf{A}=\mathbf{A}^{T}$ be a real symmetric $n \times n$ matrix. Then,
a) All the e-vals of \mathbf{A} are real
b) E-vecs corresponding to distinct e-vals are orthogonal.
c) There's an orthonormal basis of \mathbb{R}^{n} consisting of n e-vecs of \mathbf{A}.

In particular, all real symmetric matrices are complete and real diagonalizable.

Proof quite long, in book.

Concretely: Find an orthonormal basis of \mathbb{R}^{n} given $\mathbf{A}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$, that has $\lambda_{1}=4, \lambda_{2}=2$ and $\vec{v}_{1}=(1,1), \vec{v}_{2}=(-1,1)$.

Note \mathbf{A} is symmetric. So, it is easily checked that $\vec{v}_{1} \cdot \vec{v}_{2}=0$.

To get the orthonormal basis, we need only normalize the $\vec{v}_{i}: \vec{u}_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \vec{u}_{2}=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

Theorem: A symmetric $\mathbf{K}=\mathbf{K}^{T}$ is positive definite $\mathbf{i f f}$ all of its e-vals are strictly positive.

Proof: (\Rightarrow) First, if $\mathbf{K}>0$, then, by definition, $\vec{x}^{T} \mathbf{K} \vec{x}>0$ for all nonzero $\vec{x} \in \mathbb{R}^{n}$.

In particular, if $\vec{x}=\vec{v} \neq \overrightarrow{0}$ is an e-vec with (necessarily real) e-val λ, then
$0<\vec{v}^{T} \mathbf{K} \vec{v}=\vec{v}^{T}(\lambda \vec{v})=\lambda \vec{v}^{T} \vec{v}=\lambda|\vec{v}|^{2}$,
which immediately proves $\lambda>0$.

Conversely (\Leftarrow), suppose \mathbf{K} has all positive e-vals. Let $\vec{u}_{1}, \ldots, \vec{u}_{n}$ be the orthonormal e-vec basis guaranteed by the previous thm, with $\mathbf{K} \vec{u}_{j}=\lambda_{j} \vec{u}_{j}$ where $\lambda_{j}>0$.

Writing $\vec{x}=c_{1} \vec{u}_{1}+\ldots+c_{n} \vec{u}_{n}$, we obtain $\mathbf{K} \vec{x}=c_{1} \lambda_{1} \vec{u}_{1}+\ldots+c_{n} \lambda_{n} \vec{u}_{n}$.

Therefore, using orthonormality of the e-vecs:
$\vec{x}^{T} \mathbf{K} \vec{x}=\left(c_{1} \vec{u}_{1}^{T}+\ldots+c_{n} \vec{u}_{n}^{T}\right)\left(c_{1} \lambda_{1} \vec{u}_{1}+\ldots+c_{n} \lambda_{n} \vec{u}_{n}\right)=\lambda_{1} c_{1}^{2}+\ldots+\lambda_{n} c_{n}^{2}$.

Note this last expression is greater then zero whenever $\vec{x} \neq 0$,
since only $\vec{x}=\overrightarrow{0}$ has coordinates $c_{1}=\ldots=c_{n}=0$. This establishes $\mathbf{K}>\mathbf{0}$.

Proposition: Let $\mathbf{A}=\mathbf{A}^{T}$ be $n \times n$, symmetric. Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be an orthogonal e-vec basis such that $\vec{v}_{1}, \ldots, \vec{v}_{r}$ correspond to nonzero e-vals, while $\vec{v}_{r+1}, \ldots, \vec{v}_{n}$ are null e-vecs corresponding to the zero e-val (if any). Then $r=\operatorname{rank} \mathbf{A}$; the non-null e-vecs $\vec{v}_{1}, \ldots, \vec{v}_{r}$ form an orthogonal basis for $\operatorname{img} \mathbf{A}=\operatorname{coimg} \mathbf{A}$, while the null e-vecs $\vec{v}_{r+1}, \ldots, \vec{v}_{n}$ form an orthogonal basis for ker $\mathbf{A}=\operatorname{co} \operatorname{ker} \mathbf{A}$.

Proof: The zero e-space coincides with kernel: $V_{0}=\operatorname{ker}(\mathbf{A}-\mathbf{0 I})=\operatorname{ker} \mathbf{A}$.

Thus, the linearly independent null e-vecs form a basis for $\operatorname{ker} \mathbf{A}$, which has dimension $n-r$ where $r=\operatorname{rank} \mathbf{A}$.

Moreover, the remaining r non-null e-vecs are (by prev. thm) orthogonal to the null e-vecs. Therefore, they must
form a basis for the kernel's orthogonal complement, namely $\operatorname{coimg} \mathbf{A}=\operatorname{img} \mathbf{A} . \quad\left(\right.$ since $\left.\mathbf{A}=\mathbf{A}^{T}\right)$

Example: Determine whether $\left[\begin{array}{ccc}4 & -1 & -2 \\ -1 & 4 & -1 \\ -2 & -1 & 4\end{array}\right]$ is positive definite by computing its e-vals.
Validate your conclusions by using the methods learned previously in the course.

Observe the symmetry. Then: $\left|\begin{array}{ccc}4-\lambda & -1 & -2 \\ -1 & 4-\lambda & -1 \\ -2 & -1 & 4-\lambda\end{array}\right|=\left|\begin{array}{ccc}4-\lambda & -1 & -2 \\ -1 & 4-\lambda & -1 \\ 0 & 2 \lambda-9 & 6-\lambda\end{array}\right|$

$$
=(4-\lambda)((4-\lambda)(6-\lambda)-(9-2 \lambda))-(-1)(-(6-\lambda)-(-2)(2 \lambda-9))=-\lambda^{3}+12 \lambda^{2}-42 \lambda+36 .
$$

Note the factors of (the constant term) 36 are $\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 9, \pm 13, \pm 36\}$.

Try these as possible solutions until eventually, finding $\lambda=6$.

Polynomial division by $(\lambda-6)$.

$$
\begin{aligned}
-\lambda^{3}+12 \lambda^{2}-42 \lambda+36 & =(\lambda-6)\left(-\lambda^{2}\right)+\left(6 \lambda^{2}-42 \lambda+36\right)=(\lambda-6)\left(-\lambda^{2}\right)+(\lambda-6)(6 \lambda)+(-6 \lambda+36) \\
& =(\lambda-6)\left(-\lambda^{2}\right)+(\lambda-6)(6 \lambda)-6(\lambda-6) .
\end{aligned}
$$

So, $-\lambda^{3}+12 \lambda^{2}-42 \lambda+36=(\lambda-6)\left(-\lambda^{2}+6 \lambda-6\right)$,
and $\lambda \in\{6,3 \pm \sqrt{3}\} \approx\{6,1.27,4.73\} . \quad$ (quadratic formula)

Pos e-vals, so pos def. Verify w/ "other method in course"?

Recall, a symmetric matrix is positive definite iff it is regular and has all positive pivots.

$$
\left[\begin{array}{ccc}
4 & -1 & -2 \\
-1 & 4 & -1 \\
-2 & -1 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
4 & -1 & -2 \\
0 & \frac{15}{4} & -\frac{3}{2} \\
0 & -9 & 6
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
4 & -1 & -2 \\
0 & \frac{15}{4} & -\frac{3}{2} \\
0 & 0 & \frac{16}{5}
\end{array}\right] \text {, so pos def. }
$$

The Spectral Theorem

The previous section told us that a real symmetric matrix produces an e-basis for the space, and is therefore diagonalizable. Furthermore, since we can choose those e-vecs such that they are of unit length, we have the following:

Theorem: Let \mathbf{A} be real, symmetric. Then there exists an orthogonal \mathbf{Q} such that $\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{-1}=\mathbf{Q} \Lambda \mathbf{Q}^{T}$,
where Λ is real/diagonal. The e-vals of \mathbf{A} appear on the diagonal of Λ, while the columns of \mathbf{Q} are the corresponding orthonormal e-vecs.
$\mathbf{A}=\mathbf{Q} \Lambda \mathbf{Q}^{-1}$ is not the same as $\mathbf{A}=\mathbf{L D L}^{-1}$ (the latter produced from row reduction method).

The spectral factorization provides us an alternative means of diagonalizing the associated quadratic form $q(\vec{x})=\vec{x}^{T} \mathbf{A} \vec{x}$. That is, a means for completing the square.

Observe (for real symmetric A): $q(\vec{x})=\vec{x}^{T} \mathbf{A} \vec{x}=\vec{x}^{T} \mathbf{Q} \Lambda \mathbf{Q}^{-1} \vec{x}=\vec{y}^{T} \boldsymbol{\Lambda} \vec{y}=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}$,
where $\vec{y}=\mathbf{Q}^{T} \vec{x}=\mathbf{Q}^{-1} \vec{x}$ are the coords of \vec{x} with respect to the orthonormal e-vec basis of \mathbf{A}.

In particular, $q(\vec{x})>0$ for all $\vec{x} \neq \overrightarrow{0}$ and so \mathbf{A} is positive definite iff each e-val is strictly positive,
reconfirming our previous thm.

Example: Construct a symmetric A with the following e-vecs and e-vals, or explain why none exists:
$\lambda_{1}=-2, \quad \vec{v}_{1}=(1,-1)$ and $\lambda_{2}=1, \vec{v}_{2}=(1,1)$.

It's diagonalizable (real, symmetric, so two e-vecs), and forming $\mathbf{Q} \Lambda \mathbf{Q}^{-1}$, we have:
$\mathbf{A}=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}-\frac{1}{2} & \frac{3}{2} \\ \frac{3}{2} & -\frac{1}{2}\end{array}\right]$.

