
Applied Linear Algebra

Instructor: Jodin Morey moreyjc@umn.edu

8.2 Eigenvalues and Eigenvectors

Eigenvalue/Eigenvector Intuition:

[see animation in class]

Definition: Given Ann, scalar  is called eigenvalue of A if there’s v  0, called an eigenvector, such that: Av  v . 

Example: A 

1 2 0

4 0 6

0 2 1

. Let v 

x

y

z

.

If Av  v , then

1 2 0

4 0 6

0 2 1

x

y

z

 

x

y

z

.



x  2y  x,

4x  6z  y,

2y  z  z.

 4 vars, 3 eqns, nonlinear! (ick!)

There must be a different way, right?

The Different Way

For some A, assume  exists. Recall (by definition of e-val) that for every  there exists a nonzero v  Rn such that



Av  v ...

 Av  v  0  Av  In v  0

 A  Inv  0 ...

 Therefore: kerA  In  0

 A  In cannot be invertible (i.e., must be singular)

 detA  In  0.

We could solve this! (...if polynomial in  is of low degree)

We’ve just shown the following results:

Theorem: A scalar  is an e-val of Ann iff A  I is singular, i.e., of rank n.

The corresponding e-vecs are the nonzero solutions to the eigenvalue equation: A  Iv  0.

Corollary: A scalar  is an e-val of A iff  is a solution to characteristic equation/polynomial: fA : |A  I|  0.

vector (red), eigenvector (blue) underA (see animated during class)

Corollary: A matrix Ann is singular iff A has e-val:   0.

Proof:: |A  I|  |A  0I|  |A|  0.

 A is singular implies , v  0 such that Av  0  v , where   0.

Example: Find e-vals of A 

5 1 2

0 4 7

0 0 7

. ...



detA  I3  0  det

5   1 2

0 4   7

0 0 7  

 0 ...

 5  4  7    0    4,5,7. So, as we can see:

E-vals of Triangular Matrix Thm: E-vals of a triangular matrix are its diagonal entries.

Example: A 

1 2 0

4 0 6

0 2 1

, find e-vals.

fA  det A 
 0 0

0  0

0 0 



1   2 0

4  6

0 2 1  

 1  
 6

2 1  
 2

4 6

0 1  
 0

4 

0 2

 1  1    12  241   ...

 1  1    12  8  1  2    20 (Pro-tip, keep common factor, cubics are hard!)

   1  5  4.

e-vals of A are 1,4,5.

How do we find e-vecs of A 

1 2 0

4 0 6

0 2 1

?

When 1  4 : Solve A  Iv  0 or find kerA  I. (3 eqs, 3 vars!)



1  4 2 0

4 0  4 6

0 2 1  4



5 2 0

4 4 6

0 2 5



1 2 6

4 4 6

0 2 5





1 2 6

0 12 30

0 2 5



1 2 6

0 2 5

0 0 0



1 0 1

0 1 5
2

0 0 0

kerA 

z

 5
2 z

z

: z  R  span

2

5

2

.

So v 1  2  5 2 is e-vec for 1  4.

? Sometimes.

Our e-vec from above v 1  2  5 2 implies that 2c 1  5c 2  2c 3  0, where c i are column vecs of A  I.

If you are sufficiently fancy, you may be able to observe this directly from A  I, without the above calculations.

AI 

2 5 2

5 2 0

4 4 6

0 2 5

The numbers placed above A  I, while attempting this process, are called Kyle numbers.

With Kyle # method, you’ve only determined v 1  kerA  I,

so the kernel is at least as big as spanv 1. Could it be larger?

2  1 : kerA  I  ker

0 2 0

4 1 6

0 2 0

...

3 0 2

 ker

0 2 0

4 1 6

0 2 0

(  or  ? ) span

3

0

2

.



3  5 : kerA  5I  ker

4 2 0

4 5 6

0 2 4

...

1 2 1

 ker

4 2 0

4 5 6

0 2 4

(  or  ? ) span

1

2

1

.

Recall: 1  4 : kerA  4I  span

2

5

2

.

Algebraic Multiplicity of  (almu): Root multiplicity of fA.

Geometric Multiplicity of  (gemu): dimkerA  In.

?  Later: we find out the (  or  ? ) above should be equal signs because 1  gemu  almu,

and every almu here is 1, so gemu is 1 too. So, once we’ve found 1 dim worth of e-vecs, we’re done.

Eigen-stuff Gets Complex

Remark: If a  ib is an e-val of real matrix Ann, w/associated e-vec u  iw, then a  ib is also an e-val of A,

w/e-vec u  iw.

Proof: By definition, Au  iw  a  ibu  iw.

Taking conjugate of both sides: Au  iw  a  ibu  iw.

Recall, to take a conjugate of a vect. or matrix is to take the conjugate of each component.

So, a real matrix is unaffected by complex conjugation, A  A, we conclude

 A u  iw  Au  iw  a  ibu  iw. (A  A since A  Rnn)

So a  ib is an e-val of A, with associated e-vec u  iw. 

Example: Find the e-vals & e-spaces (subspaces spanned by e-vecs) for A 
0 1

1 0
. . . .



det
 1

1 
 2  1  0    i. . . .

 : ker
i 1

1 i
(Kyle?) . . .

 span
i

1
.

 : ker
i 1

1 i
. . .

 span
i

1
. 

Observe that u 1  i, 1 and u 2  i, 1 are complex conjugates:

u 1  i, 1  i , 1  i, 1  u 2.

Other Cool & Useful Odds & Ends

For a generic: A 
a b

c d
, fA  det

a   b

c d  

 a  d    bc  2  a  d  ad  bc ...

 2  trA  detA, where trA is called the trace of A, the sum of the diagonal elements.

 e-vals of ANY A22 are:   trA trA24detA

2
.

Proposition: In general, fA  n  trAn1 detA.



Observe that fA0  detA  0I  detA.

According to the fundamental theorem of algebra, every complex polynomial of degree n  1 can be completely factored,

and so we can write the characteristic polynomial as: fA  1n  1  2   n.

The  i are the roots of fA, and hence the eigenvalues of A.

Corollary: Any Ann possesses at least one and at most n distinct complex e-vals.

Proposition: With n real e-vals, including multiplicity:

trA  1  n, detA  1n.

This can be a timesaver, especially for 2  2 matrices:

Example: A 
3 1

2 2
.

Obviously trA  5 and detA  4. Thms above say:

1  2  5

12  4

In other words, which two numbers sum to 5, and multiply to 4?

 1  1, 2  4.

Notice: The first equation gives us 1  5  2. Substituting into 2nd Eq: 5  22  4  0.

This is 2  5  4, the characteristic polynomial.

But earlier we didn’t have to write the polynomial out. Wahoo!

Example: Given A33 such that trA  3 and detA  5. Let v  R3 such that Av  2v .

What are e-vals of A and their multiplicities?

 3  2  2  3,  5  223. (2 eqs, 2 vars!)

Proposition: Square matrices A and AT have same characteristic eqn, and hence same e-vals with same multiplicities

(but possbly different e-vecs).

Proof: This follows immediately from fact that |AT |  |A|, learned earlier.

Observe: fA  |A  I|



 A  IT

 |AT  I|  fAT. 

Video Tutorial (visually rich and intuitive): https://youtu.be/PFDu9oVAE-g

The Gershgorin Circle Thm

Definitions: Given Ann  aij, either real or complex. For each 1  i  n,

define the i th Gershgorin Disk as: Di  z  C : |z  aii |  ri, .

where ri   j1, ji
n |aij | (abs sum of ith row’s components, except diagn.).

The Gershgorin Domain DA  i1
n Di  C is union of Gershgorin disks.

Thm: All real and complex e-vals of A lie in its Gershgorin domain DA  C.

Concretely: Let A 

10 1 0 1
1
5 8 1

5
1
5

1 1 2 1

1 1 1 11

For each row, we add up the absolute values of the non-diagonal entries.

These become the radii around each of diagonal entries (shaded yellow).

D10,2, D8, 3
5 , D2,3, and D11,3.

The actual eigenvalues are marked as  in the graph, and are:

 10, 7.9, 1.9,  10.9 .

Definition: A square matrix A is called strictly diagonally dominant if |aii |   j1, ji
n |aij |  ri, for all i  1, ,n.  

Theorem: A strictly diagonally dominant matrix is nonsingular.

Proof: The diagonal dominance inequalities   imply radius of the i th Gershgorin disk is strictly

less than modulus of its center: ri  |aii |.

This implies that the disk cannot contain 0.



Indeed, if z  Di, then, by the reverse triangle inequality (|x  y|  ||x|  |y||),

ri  |aii  |  |aii |  ||  ri  ||, and hence ||  0.

Thus, 0 does not lie in the Gershgorin domain DA, and so cannot be an e-val.

Therefore, from previous corollary above, A cannot be singular.

(A is singular implies , v  0 such that Av  0  v , where   0. ) 

Exercises

Problem: Find the (real) eigenvalues, the associated eigenvectors, and a basis for each eigenspace for:

A 

4 3 1

2 1 1

0 0 2

.

|A  I| 
4   3 1

2 1   1

0 0 2  

 2  4  1    6 (pro tip....)

 2  2  3  2     1  22.

Characteristic Polynomial: p    1  22  0.

Eigenvalues: 1  1, 2  3  2. Now what?

For each k, solve A  kIv  0.

With 1  1 :

4  1 3 1

2 1  1 1

0 0 2  1



3 3 1

2 2 1

0 0 1

R11R2


1 1 0

2 2 1

0 0 1



R21R1


1 1 0

0 0 1

0 0 1


1 1 0

0 0 1
, z  0, y  b, x  y  b.



b

b

0

 b

1

1

0

. v 1 

1

1

0

, when b  1.

The eigenspace of 1  1 is 1-dimensional.

Basis for 1 eigenspace: v 1.

With 2,3  2 : A  2I 

4  2 3 1

2 1  2 1

0 0 2  2



2 3 1

2 3 1

0 0 0

 2 3 1

 1  3
2

1
2

, z  c, y  b, x  3
2 y 

1
2 z  3

2 b 
1
2 c.



3
2 b 

1
2 c

b

c

 b

3
2

1

0

 c

 1
2

0

1

.

v 2 

3

2

0

and v 3 

1

0

2

, when b,c  2.

The eigenspace of 2,3  2 is two-dimensional.

Basis for 2,3 eigenspace: v 2, v 3.

Problem: Find the complex-conjugate eigenvalues and corresponding eigenvectors of the matrix:

A 
0 12

12 0
.



Characteristic polynomial: p  |A  I| 
0   12

12 0  

 2  144  0.

Eigenvalues: 1  12i, 2  12i.

For each k, solve A  kIv  0.

With 1  12i :
0  1 12

12 0  1


12i 12

12 12i

1
12

R1,2


i 1

1 i

R1R2


1 i

i 1


1 i

0 0
 y  b and x  ib.

So, v 1 
ib

b
 b

i

1


i

1
, when b  1.

Similarly

With 2  12i :
12ia  12b  0

12a  12ib  0
v 2 

i

1
.

(leave it to you as an exercise)

Note that v 1 and v 2 are conjugate to each other.

Problem: Give an example of a 2  2 matrix A such that A and AT do not have the same eigenvectors.

Consider the matrix A 
1 0

1 1
with characteristic equation   12  0 and the single eigenvalue   1.

Then A  I 
0 0

1 0
and it follows that the only associated eigenvector is a multiple of

0

1
.



The transpose AT 
1 1

0 1
has the same characteristic equation and eigenvalue,

but AT  I 
0 1

0 0
, so its only eigenvector is a multiple of

1

0
.

Thus A and AT have the same eigenvalue but different eigenvectors.


