8.2 Eigenvalues and Eigenvectors

Eigenvalue/Eigenvector Intuition:

[see animation in class]

Definition: Given $\mathbf{A}^{n \times n}$, scalar λ is called eigenvalue of \mathbf{A} if there's $\vec{v} \neq 0$, called an eigenvector, such that: $\mathbf{A} \vec{v}=\lambda \vec{v}$.

Example: $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 4 & 0 & 6 \\ 0 & 2 & 1\end{array}\right]$. Let $\vec{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.

$$
\begin{aligned}
& \text { If } \mathbf{A} \vec{v}=\lambda \vec{v} \text {, then }\left[\begin{array}{lll}
1 & 2 & 0 \\
4 & 0 & 6 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\lambda\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] . \\
& \qquad \begin{aligned}
x+2 y & =\lambda x, \\
4 x+6 z & =\lambda y, \quad \Rightarrow \quad 4 \text { vars, } 3 \text { eqns, nonlinear! (ick!) } \\
2 y+z & =\lambda z .
\end{aligned}
\end{aligned}
$$

(I. There must be a different way, right?

The Different Way

For some \mathbf{A}, assume λ exists. Recall (by definition of e-val) that for every λ there exists a nonzero $\vec{v} \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& \Leftrightarrow \quad \mathbf{A} \vec{v}-\lambda \vec{v}=\overrightarrow{0} \Rightarrow \mathbf{A} \vec{v}-\lambda \mathbf{I}_{n} \vec{v}=\overrightarrow{0} \\
& \Leftrightarrow \quad\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right) \vec{v}=\overrightarrow{0} \\
& \Leftrightarrow \quad \text { Therefore: } \operatorname{ker}\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right) \neq\{\overrightarrow{0}\} \\
& \Leftrightarrow \quad \mathbf{A}-\lambda \mathbf{I}_{n} \text { cannot be invertible } \\
& \Leftrightarrow \quad \operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right)=0
\end{aligned}
$$

We could solve this! (...if polynomial in λ is of low degree)

We've just shown the following results:
Theorem: A scalar λ is an e-val of $\mathbf{A}^{n \times n}$ iff $\mathbf{A}-\lambda \mathbf{I}$ is singular, i.e., of rank $<n$.
The corresponding e-vecs are the nonzero solutions to the eigenvalue equation: $(\mathbf{A}-\lambda \mathbf{I}) \vec{v}=\overrightarrow{0}$.

Corollary: A scalar λ is an e-val of \mathbf{A} iff λ is a solution to characteristic equation/polynomial: $f_{\mathbf{A}}(\lambda):=|\mathbf{A}-\lambda \mathbf{I}|=0$.

vector (red), eigenvector (blue) under \mathbf{A}

(see animated during class)

Corollary: A matrix $\mathbf{A}^{n \times n}$ is singular iff \mathbf{A} has e-val: $\lambda=0$.

Proof: $\Leftarrow:|\mathbf{A}-\lambda \mathbf{I}|=|\mathbf{A}-0 \mathbf{I}|=|\mathbf{A}|=0$.
$\Rightarrow \mathbf{A}$ is singular implies, $\vec{v} \neq \overrightarrow{0}$ such that $\mathbf{A} \vec{v}=\overrightarrow{0}=\lambda \vec{v}$, where $\lambda=0$.

Example: Find e-vals of $\mathbf{A}=\left[\begin{array}{ccc}5 & 1 & 2 \\ 0 & 4 & 7 \\ 0 & 0 & 7\end{array}\right]$

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{3}\right)=0 & \Rightarrow \operatorname{det}\left[\begin{array}{ccc}
5-\lambda & 1 & 2 \\
0 & 4-\lambda & 7 \\
0 & 0 & 7-\lambda
\end{array}\right]=0 \\
& \Rightarrow(5-\lambda)(4-\lambda)(7-\lambda)=0 \quad \Rightarrow \quad \lambda \in\{4,5,7\} . \quad \text { So, as we can see: }
\end{aligned}
$$

E-vals of Triangular Matrix Thm: E-vals of a triangular matrix are its diagonal entries.

Example: $\mathbf{A}=\left[\begin{array}{ccc}1 & 2 & 0 \\ 4 & 0 & 6 \\ 0 & 2 & 1\end{array}\right]$, find e-vals.
$f_{\mathbf{A}}(\lambda)=\operatorname{det}\left(\mathbf{A}-\left[\begin{array}{lll}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right]\right)=\left|\begin{array}{ccc}1-\lambda & 2 & 0 \\ 4 & -\lambda & 6 \\ 0 & 2 & 1-\lambda\end{array}\right|$
$=(1-\lambda)\left|\begin{array}{cc}-\lambda & 6 \\ 2 & 1-\lambda\end{array}\right|-2\left|\begin{array}{cc}4 & 6 \\ 0 & 1-\lambda\end{array}\right|+0\left|\begin{array}{cc}4 & -\lambda \\ 0 & 2\end{array}\right|$
$=(1-\lambda)[-\lambda(1-\lambda)-12]-2[4(1-\lambda)]$
$=(1-\lambda)(-\lambda(1-\lambda)-12-8)=(1-\lambda)\left(\lambda^{2}-\lambda-20\right)$
$=(\lambda-1)(\lambda-5)(\lambda+4)$.
e -vals of \mathbf{A} are 1,-4,5.
How do we find e-vecs of $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 0 \\ 4 & 0 & 6 \\ 0 & 2 & 1\end{array}\right]$?

When $\lambda_{1}=-4: \operatorname{Solve}(\mathbf{A}-\lambda \mathbf{I}) \vec{v}=\overrightarrow{0}$ or find $\operatorname{ker}(\mathbf{A}-\lambda \mathbf{I}) . \quad$ (3 eqs, 3 vars!)

$$
\Rightarrow\left[\begin{array}{ccc}
1+4 & 2 & 0 \\
4 & 0+4 & 6 \\
0 & 2 & 1+4
\end{array}\right]=\left[\begin{array}{lll}
5 & 2 & 0 \\
4 & 4 & 6 \\
0 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & -6 \\
4 & 4 & 6 \\
0 & 2 & 5
\end{array}\right]
$$

$$
\begin{gathered}
\rightarrow\left[\begin{array}{ccc}
1 & -2 & -6 \\
0 & 12 & 30 \\
0 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -2 & -6 \\
0 & 2 & 5 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & \frac{5}{2} \\
0 & 0 & 0
\end{array}\right] \\
\operatorname{ker} \mathbf{A}=\left\{\left[\begin{array}{c}
z \\
-\frac{5}{2} z \\
z
\end{array}\right]: z \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
2 \\
-5 \\
2
\end{array}\right]\right\}
\end{gathered}
$$

? Sometimes.

Our e-vec from above $\vec{v}_{1}=\left\langle\begin{array}{ll}2-5 & 2\end{array}\right\rangle$ implies that $2 \vec{c}_{1}-5 \vec{c}_{2}+2 \vec{c}_{3}=\overrightarrow{0}$, where \vec{c}_{i} are column vecs of $\mathbf{A}-\lambda \mathbf{I}$.

If you are sufficiently fancy, you may be able to observe this directly from $\mathbf{A}-\boldsymbol{\lambda I}$, without the above calculations.

The numbers placed above $\mathbf{A}-\lambda \mathbf{I}$, while attempting this process, are called Kyle numbers.
(1. With Kyle \# method, you've only determined $\vec{v}_{1} \in \operatorname{ker}(\mathbf{A}-\lambda \mathbf{I})$, so the kernel is at least as big as $\operatorname{span}\left\{\vec{v}_{1}\right\}$. Could it be larger?
$\lambda_{2}=1: \operatorname{ker}(\mathbf{A}-\mathbf{I})=\operatorname{ker}\left[\begin{array}{ccc}0 & 2 & 0 \\ 4 & -1 & 6 \\ 0 & 2 & 0\end{array}\right]$
$3 \quad 0 \quad-2$
$=\operatorname{ker}\left[\begin{array}{ccc}0 & 2 & 0 \\ 4 & -1 & 6 \\ 0 & 2 & 0\end{array}\right](=$ or $\supset \quad ?) \operatorname{span}\left\{\left[\begin{array}{c}3 \\ 0 \\ -2\end{array}\right]\right\}$.
$\lambda_{3}=5: \operatorname{ker}(\mathbf{A}-5 \mathbf{I})=\operatorname{ker}\left[\begin{array}{ccc}-4 & 2 & 0 \\ 4 & -5 & 6 \\ 0 & 2 & -4\end{array}\right]$

$$
=\operatorname{ker}\left[\begin{array}{ccc}
1 & 2 & 1 \\
-4 & 2 & 0 \\
4 & -5 & 6 \\
0 & 2 & -4
\end{array}\right]\left(=\text { or } \supset \text { ?) } \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right\}\right.
$$

Recall: $\lambda_{1}=-4: \operatorname{ker}(\mathbf{A}+4 \mathbf{I})=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ -5 \\ 2\end{array}\right]\right\}$.

Algebraic Multiplicity of $\lambda(\operatorname{alm} u(\lambda))$: Root multiplicity of $f_{\mathbf{A}}(\lambda)$.

Geometric Multiplicity of $\lambda(\operatorname{gemu}(\lambda)): \operatorname{dim}\left(\operatorname{ker}\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right)\right)$.
? - Later: we find out the ($=$ or \supset ?) above should be equal signs because $1 \leq \operatorname{gemu}(\lambda) \leq \operatorname{almu}(\lambda)$, and every almu here is 1 , so geти is 1 too. So, once we've found 1 dim worth of e-vecs, we're done.

Eigen-stuff Gets Complex

Remark: If $a+i b$ is an e-val of real matrix $\mathbf{A}^{n \times n}$, w/associated e-vec $\vec{u}+i \vec{w}$, then $a-i b$ is also an e-val of \mathbf{A}, w/e-vec $\vec{u}-i \vec{w}$.

Proof: By definition, $\mathbf{A}(\vec{u}+i \vec{w})=(a+i b)(\vec{u}+i \vec{w})$.

Taking conjugate of both sides: $\overline{\mathbf{A}(\vec{u}+i \vec{w})}=\overline{(a+i b)(\vec{u}+i \vec{w})}$.
Recall, to take a conjugate of a vect. or matrix is to take the conjugate of each component.

So, a real matrix is unaffected by complex conjugation, $\overline{\mathbf{A}}=\mathbf{A}$, we conclude

$$
\Rightarrow \quad \overline{\mathbf{A}} \overline{(\vec{u}+i \vec{w})}=\mathbf{A}(\vec{u}-i \vec{w})=(a-i b)(\vec{u}-i \vec{w}) . \quad\left(\overline{\mathbf{A}}=\mathbf{A} \text { since } \mathbf{A} \in \mathbb{R}^{n \times n}\right)
$$

So $a-i b$ is an e-val of \mathbf{A}, with associated e-vec $\vec{u}-i \vec{w}$.

Example: Find the e-vals \& e-spaces (subspaces spanned by e-vecs) for $\mathbf{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$

$$
\begin{align*}
& \operatorname{det}\left[\begin{array}{cc}
-\lambda & -1 \\
1 & -\lambda
\end{array}\right]=\lambda^{2}+1=0 \Rightarrow \lambda= \pm i . \\
& \lambda_{+}: \operatorname{ker}\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right] \tag{Kyle?}\\
& =\operatorname{span}\left[\begin{array}{c}
i \\
1
\end{array}\right] \\
& \begin{array}{l}
\lambda_{-}: \\
\operatorname{ker}\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right] \\
=\operatorname{span}\left[\begin{array}{c}
-i \\
1
\end{array}\right]
\end{array}
\end{align*}
$$

Observe that $\vec{u}_{1}=\langle i, 1\rangle$ and $\vec{u}_{2}=\langle-i, 1\rangle$ are complex conjugates:

$$
\overline{\vec{u}_{1}}=\overline{\langle i, 1\rangle}=\langle\bar{i}, \overline{1}\rangle=\langle-i, 1\rangle=\vec{u}_{2} .
$$

Other Cool \& Useful Odds \& Ends

For a generic: $\mathbf{A}=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right], \quad f_{\mathbf{A}}(\lambda)=\operatorname{det}\left[\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right]$

$$
=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+(a d-b c)
$$

$=\lambda^{2}-\operatorname{tr}(\mathbf{A}) \lambda+\operatorname{det} \mathbf{A}$, where $\operatorname{tr}(\mathbf{A})$ is called the trace of \mathbf{A}, the sum of the diagonal elements.
$\Rightarrow \quad \mathrm{e}-\mathrm{vals}$ of $A N Y \mathbf{A}^{2 \times 2}$ are: $\lambda=\frac{\operatorname{tr}(\mathbf{A}) \pm \sqrt{(\operatorname{tr} \mathbf{A})^{2}-4 \operatorname{det} \mathbf{A}}}{2}$.

Proposition: In general, $f_{\mathbf{A}}(\lambda)=(-\lambda)^{n}+(\operatorname{tr} \mathbf{A})(-\lambda)^{n-1}+\ldots+\operatorname{det} \mathbf{A}$.

Observe that $f_{\mathbf{A}}(0)=\operatorname{det}(\mathbf{A}-0 I)=\operatorname{det} \mathbf{A}$.

According to the fundamental theorem of algebra, every complex polynomial of degree $n \geq 1$ can be completely factored, and so we can write the characteristic polynomial as: $f_{\mathbf{A}}(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)$.

The λ_{i} are the roots of $f_{\mathbf{A}}(\lambda)$, and hence the eigenvalues of \mathbf{A}.

Corollary: Any $\mathbf{A}^{n \times n}$ possesses at least one and at most n distinct complex e-vals.

Proposition: With n real e-vals, including multiplicity:

$$
\operatorname{tr} \mathbf{A}=\lambda_{1}+\ldots+\lambda_{n}, \quad \operatorname{det} \mathbf{A}=\lambda_{1} \ldots \lambda_{n} .
$$

This can be a timesaver, especially for 2×2 matrices:

Example: $\mathbf{A}=\left[\begin{array}{cc}3 & -1 \\ -2 & 2\end{array}\right]$.

Obviously $\operatorname{tr} \mathbf{A}=5$ and $\operatorname{det} \mathbf{A}=4$. Thms above say:

$$
\left.\begin{array}{c}
\lambda_{1}+\lambda_{2}=5 \\
\lambda_{1} \lambda_{2}=4
\end{array}\right\}
$$

In other words, which two numbers sum to 5 , and multiply to 4 ?

$$
\Rightarrow \lambda_{1}=1, \lambda_{2}=4
$$

Notice: The first equation gives us $\lambda_{1}=5-\lambda_{2}$. Substituting into 2nd Eq: $\left(5-\lambda_{2}\right) \lambda_{2}-4=0$.
This is $\lambda^{2}-5 \lambda+4$, the characteristic polynomial.
But earlier we didn't have to write the polynomial out. Wahoo!

Example: Given $\mathbf{A}^{3 \times 3}$ such that $\operatorname{tr}(\mathbf{A})=-3$ and $\operatorname{det}(\mathbf{A})=-5$. Let $\vec{v} \in \mathbb{R}^{3}$ such that $\mathbf{A} \vec{v}=2 \vec{v}$.
What are e-vals of \mathbf{A} and their multiplicities?
$-3=2+\lambda_{2}+\lambda_{3}, \quad-5=2 \lambda_{2} \lambda_{3} . \quad$ (2 eqs, 2 vars!)

Proposition: Square matrices \mathbf{A} and \mathbf{A}^{T} have same characteristic eqn, and hence same e-vals with same multiplicities (but possbly different e-vecs).

Proof: This follows immediately from fact that $\left|\mathbf{A}^{T}\right|=|\mathbf{A}|$, learned earlier.

Observe: $f_{\mathbf{A}}(\lambda)=|\mathbf{A}-\lambda \mathbf{I}|$

$$
\begin{aligned}
& =\left|(\mathbf{A}-\lambda \mathbf{I})^{T}\right| \\
& =\left|\mathbf{A}^{T}-\lambda \mathbf{I}\right|=f_{\mathbf{A}^{T}}(\lambda) .
\end{aligned}
$$

Video Tutorial (visually rich and intuitive): https://youtu.be/PFDu9oVAE-g

The Gershgorin Circle Chm

Definitions: Given $\mathbf{A}^{n \times n}=\left[a_{i j}\right]$, either real or complex. For each $1 \leq i \leq n$, define the $i^{\text {th }}$ Gershgorin Disk as: $D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq r_{i}\right\}$, where $r_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|$ (abs sum of i th row's components, except dian.). The Gershgorin Domain $D_{\mathrm{A}}=\bigcup_{i=1}^{n} D_{i} \subset \mathbb{C}$ is union of Gershgorin disks.

Chm: All real and complex e-vals of \mathbf{A} lie in its Gershgorin domain $D_{\mathbf{A}} \subset \mathbb{C}$.
Concretely: Let $\mathbf{A}=\left[\begin{array}{cccc}10 & 1 & 0 & 1 \\ \frac{1}{5} & 8 & \frac{1}{5} & \frac{1}{5} \\ 1 & 1 & 2 & 1 \\ -1 & -1 & -1 & -11\end{array}\right]$

For each row, we add up the absolute values of the non-diagonal entries.

These become the radii around each of diagonal entries (shaded yellow).

$$
D(10,2), D\left(8, \frac{3}{5}\right), D(2,3), \text { and } D(-11,3)
$$

The actual eigenvalues are marked as \times in the graph, and are:
$\approx\{10,7.9,1.9,-10.9\}$.

Definition: A square matrix \mathbf{A} is called strictly diagonally dominant if $\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|=r_{i}$, for all $i=1, \ldots, n$.

Theorem: A strictly diagonally dominant matrix is nonsingular.

Proof: The diagonal dominance inequalities $(* *)$ imply radius of the $\mathrm{i}^{\text {th }}$ Gershgorin disk is strictly less than modulus of its center: $r_{i}<\left|a_{i i}\right|$.

This implies that the disk cannot contain 0 .

Indeed, if $z \in D_{i}$, then, by the reverse triangle inequality $(|x-y| \geq \| x|-|y|)$, $r_{i}>\left|a_{i i}-\lambda\right| \geq\left|a_{i i}\right|-|\lambda|>r_{i}-|\lambda|$, and hence $|\lambda|>0$.

Thus, 0 does not lie in the Gershgorin domain D_{A}, and so cannot be an e-val.

Therefore, from previous corollary above, \mathbf{A} cannot be singular.
(A is singular implies, $\vec{v} \neq \overrightarrow{0}$ such that $\mathbf{A} \vec{v}=\overrightarrow{0}=\lambda \vec{v}$, where $\lambda=0$.)

Exercises

Problem: Find the (real) eigenvalues, the associated eigenvectors, and a basis for each eigenspace for:

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{ccc}
4 & -3 & 1 \\
2 & -1 & 1 \\
0 & 0 & 2
\end{array}\right] . \\
& |\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{ccc}
4-\lambda & -3 & 1 \\
2 & -1-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right|
\end{aligned}
$$

$$
=(2-\lambda)((4-\lambda)(-1-\lambda)+6) \quad(\text { pro tip } \ldots .)
$$

$$
=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)=-(\lambda-1)(\lambda-2)^{2} .
$$

Characteristic Polynomial: $p(\lambda)=-(\lambda-1)(\lambda-2)^{2}=0$.

Eigenvalues: $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=2$. Now what?

For each λ_{k}, solve $\left(\mathbf{A}-\lambda_{k} \mathbf{I}\right) \vec{v}=\overrightarrow{0}$.

With $\lambda_{1}=1: \quad\left[\begin{array}{ccc}4-1 & -3 & 1 \\ 2 & -1-1 & 1 \\ 0 & 0 & 2-1\end{array}\right]$
$=\left[\begin{array}{ccc}3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1\end{array}\right] \stackrel{R_{1}+(-1) R_{2}}{\Rightarrow}\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & -2 & 1 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{aligned}
& \stackrel{R_{2}+(-1) R_{1}}{\Rightarrow}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad z=0, y=b, x=y=b \\
& \quad \Rightarrow\left[\begin{array}{l}
b \\
b \\
0
\end{array}\right]=b\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] . \quad \vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \text { when } b=1 .
\end{aligned}
$$

The eigenspace of $\lambda_{1}=1$ is 1 -dimensional.
Basis for λ_{1} eigenspace: $\left\{\vec{v}_{1}\right\}$.

With $\lambda_{2,3}=2: \quad \mathbf{A}-\mathbf{2} \mathbf{I}=\left[\begin{array}{ccc}4-2 & -3 & 1 \\ 2 & -1-2 & 1 \\ 0 & 0 & 2-2\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & -3 & 1 \\
0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
2 & -3 & 1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
1 & -\frac{3}{2} & \frac{1}{2}
\end{array}\right], \quad z=c, \quad y=b, \quad x=\frac{3}{2} y-\frac{1}{2} z=\frac{3}{2} b-\frac{1}{2} c .
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{c}
\frac{3}{2} b-\frac{1}{2} c \\
b \\
c
\end{array}\right]=b\left[\begin{array}{c}
\frac{3}{2} \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1
\end{array}\right]
$$

$$
\vec{v}_{2}=\left[\begin{array}{l}
3 \\
2 \\
0
\end{array}\right] \text { and } \vec{v}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right] \text {, when } b, c=2
$$

The eigenspace of $\lambda_{2,3}=2$ is two-dimensional.
Basis for $\lambda_{2,3}$ eigenspace: $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$.

Problem: Find the complex-conjugate eigenvalues and corresponding eigenvectors of the matrix:

$$
\mathbf{A}=\left[\begin{array}{cc}
0 & -12 \\
12 & 0
\end{array}\right]
$$

Characteristic polynomial: $p(\lambda)=|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}0-\lambda & -12 \\ 12 & 0-\lambda\end{array}\right|$

$$
=\lambda^{2}+144=0 .
$$

Eigenvalues: $\lambda_{1}=-12 i, \lambda_{2}=+12 i$.

For each λ_{k}, solve $\left(\mathbf{A}-\lambda_{k} \mathbf{I}\right) \vec{v}=\overrightarrow{0}$.

With $\lambda_{1}=-12 i:\left[\begin{array}{cc}0-\lambda_{1} & -12 \\ 12 & 0-\lambda_{1}\end{array}\right]=\left[\begin{array}{cc}12 i & -12 \\ 12 & 12 i\end{array}\right]$

$$
\begin{aligned}
& \stackrel{\frac{1}{12} R_{1,2}}{\Rightarrow}\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right] \stackrel{R_{1} \leftrightarrow R_{2}}{\Rightarrow}\left[\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right] \Rightarrow y=b \text { and } x=-i b .
\end{aligned}
$$

So, $\vec{v}_{1}=\left[\begin{array}{c}-i b \\ b\end{array}\right]=b\left[\begin{array}{c}-i \\ 1\end{array}\right]=\left[\begin{array}{c}-i \\ 1\end{array}\right]$, when $b=1$.

Similarly...
With $\left.\lambda_{2}=+12 i: \quad \begin{array}{c}-12 i a-12 b=0 \\ 12 a-12 i b=0\end{array}\right\} \quad \vec{v}_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
(leave it to you as an exercise)
Note that \vec{v}_{1} and \vec{v}_{2} are conjugate to each other.

Problem: Give an example of a $\mathbf{2} \times \mathbf{2}$ matrix A such that A and A^{T} do not have the same eigenvectors.

Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ with characteristic equation $(\lambda-1)^{2}=0$ and the single eigenvalue $\lambda=1$
Then $\mathbf{A}-\mathbf{I}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and it follows that the only associated eigenvector is a multiple of $\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\text { but } \mathbf{A}^{T}-\mathbf{I}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text {, so its only eigenvector is a multiple of }\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Thus \mathbf{A} and \mathbf{A}^{T} have the same eigenvalue but different eigenvectors.

