Applied Linear Algebra

Instructor: Jodin Morey = moreyjc@umn.edu

8.2 Eigenvalues and Eigenvectors

Eigenvalue/Eigenvector Intuition:

[see animation in class]

Definition: Given A™", scalar A is called eigenvalue of A if there’s V # 0, called an eigenvector, such that: AV = V. ()

120 X
Example:A=| 4 0 6 | Letv=| y
021 z
1 20 X X
IfAV = AV, then| 4 0 6 y | =4 »
021 z z
x+2y =,
= 4x +6z= Ay, = 4vars,3eqns, nonlinear! (ick!)
2y+z= Az

0 There must be a different way, right?

The Different Way

For some A, assume A exists. Recall (by definition of e-val) that for every A there exists a nonzero v € R” such that



& AV-A¥=0 = AV-ALV=0
e (A-AL)Y =0

-
< Therefore: ker(A — AL,) + {0}

< A — I, cannot be invertible (i.e., must be singular)
< det(A-Al,) = 0.
We could solve this! (...if polynomial in A is of low degree)

We’ve just shown the following results:

Theorem: A scalar A is an e-val of A™" iff A — Al is singular, i.e., of rank< n.

. . . . _)
The corresponding e-vecs are the nonzero solutions to the eigenvalue equation: (A — A1)V = 0.

Corollary: A scalar 4 is an e-val of A iff A is a solution to characteristic equation/polynomial: fa(1) = |A — Al = 0.

|

e £

vector (red), eigenvector (blue) under A (see animated during class)

Corollary: A matrix A™" is singular iff A has e-val: 1 = 0.
Proof: <: |[A-AI| = |A-0I] = |A| = 0.
. . . . — - = - —
= A is singular implies , Vv # 0 such that AV = 0 = Av, where A = 0.

512
Example: Find e-vals of A = 0 4 7
00 7



det(A-AI3) =0 = det 0 4-4 7 =0

= B-AH@-M)T-1)=0 = Ae{4,57y. So,aswe can see:

E-vals of Triangular Matrix Thm: E-vals of a triangular matrix are its diagonal entries.

1 20
Example:A=| 4 0 6 |, finde-vals.
021
0 1-1 2 0
fa(d) =det| A-=| 0 A 0 = 4 -1 6
0 2 1-4
-1 6 4 6 4 -1
=(1-4) -
2 1-2 0 1-2 0 2

=1 -)[-A1-21)-12]-2[4(1 - 1)]
= (1 - ﬂ)(—l(l - ﬂ) -12 - 8) = (1 - l)(lz —-A- 20) (Pro-tip, keep common factor, cubics are hard!)
=A-1)A-5)(A+4).

e-vals of A are 1,—4,5.

120
How do we find e-vecs of A = 4 0 6 |?
021

When 11 = —4 : Solve (A — AI)¥ = 0 or find ker(A — AI). (3 egs, 3 vars!)

1+4 2 0 520 1 -2 -6
= 4 0+4 6 446 | - | 44 6
0 2 1+4 025 0 2 5



I -2 -6 1 -2 -6 1 0 -1

— 0 12 30 — 0 2 5 — 01 %
0 2 5 0 0 0 00 O

z 2

kerA = -2z |:z€eR » =span -5

z 2

SoV; = <2 -5 2> is e-vec for 1; = —4.

‘? .
T | Sometimes.
Our e-vec from above V| = <2 -5 2> implies that 27 — 5¢, + 2¢3 = 6), where ¢; are column vecs of A — AL

If you are sufficiently fancy, you may be able to observe this directly from A — AI, without the above calculations.

520
AM= | 4 46
025

The numbers placed above A — AL, while attempting this process, are called Kyle numbers.

@ With Kyle # method, you’ve only determined ¥, € ker(A — AI),

so the kernel is at least as big as span{v}. Could it be larger?

0 2 0
Ay =1:ker(A-I)=ker[| 4 -1 6
0 2 0
30 =2
0 2 0 3
=ker| 4 -1 6 (=or> ?) span 0

0 2 0 -2



-4 2 0
Az =5 :ker(A-5I)=ker] 4 -5 6

0 2 -4
1 21

-4 2 0 1
=ker| 4 -5 6 (=or> ?) span 2
0 2 -4 1

2

Recall: 1, = —4 : ker(A +41) = span -5

2

Algebraic Multiplicity of A (almu(A)): Root multiplicity of fa(1).
Geometric Multiplicity of A (gemu(1)): dim(ker(A — AL,)).

? — Later: we find out the (=or > ?)above should be equal signs because 1 < gemu(A) < almu(d),

and every almu here is 1, so gemu is 1 too. So, once we’ve found 1 dim worth of e-vecs, we’re done.

Eigen-stuff Gets Complex

Remark: If a + ib is an e-val of real matrix A", w/associated e-vec % + iw, then a — ib is also an e-val of A,

- -
w/e-vec u — iw.

Proof: By definition, A(% + iw) = (a + ib) (i + iw).

Taking conjugate of both sides: A(% + W) = (a + ib) (U + iw).

Recall, to take a conjugate of a vect. or matrix is to take the conjugate of each component.

So, a real matrix is unaffected by complex conjugation, A = A, we conclude
> AW+iw) =AW —-w) = (a—ib)(W - iw). (A = Asince A € R™™)

So a — ib is an e-val of A, with associated e-vec 7 — iw. [ |

0 -1
Example: Find the e-vals & e-spaces (subspaces spanned by e-vecs) for A = |: Lo :|



-1 -1
det =22+1=0 = A=+
1 -2

i -1
Ay ker|: ll ' :| (Kyle?)
—i
i
= span .
P 1

-
= span .

Observe that 77; = (i,1) and %, = (—i, 1) are complex conjugates:

fA(m:det[ “;l df/l ]

=(@a-A)(d-21)—-bc = A*—(a+d)A+ (ad- bc)

= A2 —tr(A)A + det A, where t(A) is called the trace of A, the sum of the diagonal elements.

1AL (tra)>—4 detA
e-vals of ANY A>2 are: A =W @A TRdA

= 2

Proposition: In general, fa(1) = (=1)" + (rA)(-1)"" +... +detA.



Observe that fa(0) = det(A — 0/) = detA.

According to the fundamental theorem of algebra, every complex polynomial of degree n > 1 can be completely factored,
and so we can write the characteristic polynomial as: fa(1) = (=1)"(A = 241)(A = 22)...(A = 1,).
The A; are the roots of fa(4), and hence the eigenvalues of A.

Corollary: Any A" possesses at least one and at most n distinct complex e-vals.

Proposition: With n real e-vals, including multiplicity:
rA = A1 +...+ Ay, detA = A;... 4,

0 This can be a timesaver, especially for 2 x 2 matrices:

3 -1
Example: A = .
-2 2

Obviously t7rA = 5 and detA = 4. Thms above say:
ﬂl + 12 =5
AMAr =4
In other words, which two numbers sum to 5, and multiply to 4?
> A =1, 1, =4.
Notice: The first equation givesus A; = 5 — A,. Substituting into 2nd Eq: (5 - 42)A2—4 = 0.
This is A% — 54 + 4, the characteristic polynomial.

But earlier we didn’t have to write the polynomial out. Wahoo!

Example: Given A* such that #7(A) = -3 and det(A) = —5. Let V € R? such that AV = 27.

What are e-vals of A and their multiplicities?
-3 =24+ 212+ A3, -5 =21As. (2 egs, 2 vars!)

Proposition: Square matrices A and A” have same characteristic eqn, and hence same e-vals with same multiplicities

(but possbly different e-vecs).
Proof: This follows immediately from fact that [A”| = |A|, learned earlier.

Observe: fa(1) = |A - A|



= [(A-aDT]|
= AT = M| = fur(R). [ ]

Video Tutorial (visually rich and intuitive): https://youtu.be/PFDu9oVAE-g

The Gershgorin Circle Thm Eigenvalue

Definitions: Given A" = [a;], either real or complex. For each 1 <i < n,
define the i Gershgorin Disk as: D; = {z € C : |z—a;| < ri},. U "

A4 4

where r; = Z;z=1,j¢l.|aij| (abs sum of ith row’s components, except diagn.).

The Gershgorin Domain Da = U, D; < C is union of Gershgorin disks.

Thm: All real and complex e-vals of A lie in its Gershgorin domain Dy < C.
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X  Eigenvalues

Ju—
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Concretely: Let A =

—_—
N u-|>—-
—_ =

[
|
Imaginary axis

o
X
X
X
X

For each row, we add up the absolute values of the non-diagonal entries. -5

These become the radii around each of diagonal entries (shaded yellow). e T = 5 ) T o=
D(10,2), D(8,<), D(2,3), and D(-11,3). Real axis

The actual eigenvalues are marked as x in the graph, and are:
~ {10,7.9, 1.9, —10.9}.

n

Definition: A square matrix A is called strictly diagonally dominant if |a;;| > ZH i

laj| = ri, foralli =1,...,n. (* %)

Theorem: A strictly diagonally dominant matrix is nonsingular.

Proof: The diagonal dominance inequalities (x *) imply radius of the i”» Gershgorin disk is strictly

less than modulus of its center: r; < |a;i|.

This implies that the disk cannot contain 0.



Indeed, if z € D;, then, by the reverse triangle inequality (Jx — y| > |jx| — [v|]),

ri > |a,-,~ —l| > |a,-,~| - M| >ri— |l|, and hence |l| > 0.

Thus, 0 does not lie in the Gershgorin domain D4, and so cannot be an e-val.

Therefore, from previous corollary above, A cannot be singular.

(A is singular implies , V # 0 such that AV = 0 = AV, where A = 0.) |
Exercises ﬁ
A
Problem: Find the (real) eigenvalues, the associated eigenvectors, and a basis for each eigenspace for:
4 -3 1
A= 2 -1 1
0 0 2

=Q2-1)(@A-A)(E1-1)+6)  (protip....)

=Q2-2)A*-31+2) = —(A-1H(A-2)%
Characteristic Polynomial: p(1) = —(A—1)(A-2)* = 0.
Eigenvalues: 1| = 1, A, = A3 = 2. Now what?

For each Ay, solve (A — 1, 1)V = 6)

4-1 3 1
With 4, = 1: 2 -1-1 1

3 -3 1 1 -1 0
Ri+(-1)R;

= 2 21 = 2 21

0 0 1 0 0 1



1 -1 0
Ra+(=1)R; 1 -1 0
= 0 0 1 = , z=0,y=b, x=y=>b.

The eigenspace of 11 = 1 is 1-dimensional.

Basis for A eigenspace: {V1}.

With12,3=22 A-2I = 2 -1-2 1

2 31
-l 231 | =][231]
0 0 O
i 31| _ 3 1 _ 3 1
:>_ 1 -3 7 _, z=c¢c )y b, X 7)/—72 = 7[)—70.
B L] 3 1
3b- e 3 7
= b =bl 1 +c 0
c 0 1
3 -1
Vo=| 2 |andV; = 0 |, whenb,c = 2.
The eigenspace of 1,3 = 2 is two-dimensional.
Basis for A, eigenspace: {V,,V3}.
Problem: Find the complex-conjugate eigenvalues and corresponding eigenvectors of the matrix:

0 -12
A= .
|: 12 0 :|



0-1 -12

Characteristic polynomial: p(1) = [A — AI| =
polynomial: p(1) = [A =1 = | = 7 7

=A*+144 = 0.
Eigenvalues: 1, = —12i, 1, = +12i.

For each Ay, solve (A — A,1)¥ = 0.

. ) 0-4; -12 12i -12
With A1 = -12i : =
12 0-X44 12 12§

Similarly...

. ] —12ia—12b =0 = i
With A, = +12i : Vo = .
12a-12ib =0 1

(leave it to you as an exercise)

Note that V| and ¥, are conjugate to each other.

Problem: Give an example of a 2 x 2 matrix A such that A and A” do not have the same eigenvectors.

1

Consider the matrix A = |: : :| with characteristic equation (1 — 1)? = 0 and the single eigenvalue A = 1.

00 0
Then A -1 = |: Lo :| and it follows that the only associated eigenvector is a multiple of |: | :|



11
The transpose A7 = |: -

:| has the same characteristic equation and eigenvalue,

01 1
but AT -1 = |: 0 0 :|, so its only eigenvector is a multiple of |: 0 :|

Thus A and A’ have the same eigenvalue but different eigenvectors.



