Applied Linear Algebra

Instructor: Jodin Morey = moreyjc@umn.edu

7.2 Linear Transformations
X

Consider linear function L :R” —R” that maps nD Euclidean space to itself. L mapsaX € R" to L[X] = A™"X.

When thinking of it geometrically like this, we refer to L as a linear transformations (LT).

+b
In R2, they have the form: L ol T ,
v cx +dy

a b
where A = .

Types of LTs in R?

cosf —sinf

Rotation Matrices: Ry = |: :|, rotating vectors through angle 6.

sinf cosf

X
T
Rotations without reflections occur with proper orthogonal matrices.
That is, matrices Q that satisfy: Q’Q = I and detQ = +1.

Rotations without reflections

— e
Alternatively, rotations with reflections occur with improper orthogonal matrices:
Q Such that Q’Q = I and |Q| = 1.

Rotations with reflections

A proper 3D orthogonal matrix Q = [ % %, %3 | with #; = Q@; corresponds to rotation in which 2;
are rotated to new positions given by orthonormal basis ;. Every 3 x 3 orthogonal matrix corresponds

to rotation around a line through the origin in R? (axis of rotation).




Since the product of two (proper) orthogonal matrices is also (proper) orthogonal, the composition of two rotations is also a
rotation.

Unlike 2D case, order in which rotations are performed in 3D is important.

Multiplication of # x n orthogonal matrices is not commutative when n > 3.

Example: Rotating first around y-axis, then around x-axis, and then x-axis.

Not the same as around x-axis, then y-axis, then x-axis. = x
>~ around y, then x, then x. >~ around x, then y, then x.
see animation in class
LTs from elementary matrices:
¢ Multiplying a row by a scalar =  stretching and/or reflection transformation.
20 X 2x ‘
Example: A = > L = .
0 1 y y ‘
stretching

-2 0 20 -1 0
Example: A = = , -
0 1 0 1 0 1

corresponds to reflection through y-axis followed by previous stretching. ‘

reflection through y-axis then stretching

¢ Row interchange = reflection through diagonal y = x.

o[ 0] - [1][2] 4

reflection through y = x

¢ Adding a multiple of one row to another =  Shear along some axis.

— T
1 2 X x+2y
Example: A = > L = .
01 y y

Shear

Noninvertible LTs = projection from the plane onto the origin, or onto a line through the origin.



Example: A = > L = .
y -
See animation in class

Generalizing
In higher dimensions, elementary matrices can produce LTs of types:
¢ stretch in a single coordinate direction.
¢ reflect through a coordinate (hyper)plane.
¢ reflect through a diagonal (hyper)plane.

¢ shear along a coordinate axis.
And all invertible LTs can be constructed from a sequence of these types.

The last type of LT is noninvertible, and so is not the result of an elementary matrix:

¢ orthogonally project onto a lower dimensional subspace.

And ALL transformations can be built up from the previous five types.

Rotation Translation Scaling Reflection Shearing

Change of Basis

Up until now, vector notation {(x;,x»,x3) was meant to indicate: x; € + x2€» + x3€3.

1 23

:|?, we have intended it to mean:
4 5

Indeed, when you have seen matrix multiplication AX = |:

X
123 1 123 I I .
X2 = (x1€1 +x2€3 +x3€3) (Std unit basis €, €3, €3 in domain)
4 56 4 56
X

3



123 | 123 123 |
= X1 e +Xxp e+ X3 e
4 5 6 4 5 6 4 5 6

1 2 3
= X1 + X2 + X3
4 5 6
= (x1 +2x2 + 3x3 ye + (4x1 + 5x, + 6x3 )?/2. (Std unit basis 21,25 in codomain)

However, observe that this relies on the choice of standard unit basis vectors.

In some applications, one can gain additional insight, or create computational efficiency by adopting a different basis.
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r = 4cos(360)

Polar coordinates make this shape simple to express.
In cartesian coordiates, we have: x* +y* +2x%y? —4x3 + 12xp% = 0. (1?!)

Similarly, in linear algebra, coordinates can make all the difference.

v-coordinates better than ¢,,¢»

-
u,



Geometry may suggest convenient coordinates

C1
Definition: If ¥ = ¢\ V| +...+¢» V., where B = {V1,...,V,},then we say [¥X] 3= : are the B-coordinates of X.

Cm
@) < in standard coordinates is denoted simply as ¥.

X in B —coordinates is denoted [X] .

Theorem: Let L : ¥V — W be a linear function. Suppose V has basis B, = {V1,...,V,} and W has basis B,, = {W1,...,Wn .
We can write: V = X1V +...4+X, Vs € V, W = y1W| +... +VmWm € W, where X = (x1,...,x,)" are the coordinates of V
relative to the basis of Vand y = (y1,...,y.)" are those of W relative to the basis of 7. Then, in those coordinates,

there exists S such that the linear function w = L[V] is given by multiplication by S, so y/ = SX.

Proof: We mimic proof of Theorem 7.5 (previous section), in which we discovered the matrix representative by
LIX] =AY = [L[€1] .. L[€,] ¥ =xiL[€1 ]+ ... +x,L[¥,].

This time, we’ll be replacing the @ with more general basis vectors.

In other words, we apply L to the basis vectors of V" and express the result as a linear combination of the basis vectors in W.

Byy linarity, we have:

W= L[P] = LT +... 7] (def. of 7)
= X1L[V1] +...4+x,L[V,] (linearity)
= X1 SaWi X D S Wi (L[V;] live in W, and so linear combo of W,..., W)

= Z;l:l Xj Zlnll s,-j-Vv’,- = Z;l:l eril s,-jxﬁv’,- = eril (Zjnzl S,‘ij)l/_V)l', (arithmetic)

— - N .
and so we find y; = 377 s;x;, and ' = S¥, where S = ['1 ... ¥,] and’s; = (s1;,...,5u), as claimed. [ |

1



Conversion: B-coords — Std (casy, always possible)

1 2
Example: Given B = {v,V,} = {|: | :|, |: 5 :|}, basis of R2, find std coords for:

C1
In general, given B’]B = X =ciVi+...+C vV,
Cn

C1

So X = S[X],, where S’s columns are the basis vectors.




&)
WG Conversion: Std — B-coordinates (hard, not always possible)

L 1 2 N 7
Example: Again with B = Lol ; , find B-coords for X = 5 |
N . 7 1 2 C1
We know X = S[X]_, i.e. = .

c1+2c, =17
Method 1: Solve.

C1—36‘2=2

L -3 2 7 B 5
-1 1 2 1
1 1
Example: vV, =| 1 |, V2= 2 |form basis for V = span(V,v,) < R>.
1

Find [¥], if ¥ =

|
n

0 1110

|l 1|+ 2 | =| -1 = 12| -1
1 10 1 3] 10
1110 1110

-l o1 -1 | -] 01] -1 (121
02 10 00 12

Resulting system has no solution. (¥ ¢ ») What does this mean?

How can B-coordinates make my life easier?



A
Consider T(X) = "projection of R? onto line ( = {(x, y)iy= %x}

16 12
Turns out, T(X) = ?Z 295 . But why?
25 25

How would we find this? Let’s find out.

—_
Choose V' to span (, and vV, # 0 such that V,1V.

4 3
Example: V| = , V2 .
3 4

B = {V1,V,} forms a basis of R?.

Any X € R? can be written uniquely as combination of V1,7 >.

Notice that with this choice of vectors, (V1) = V1, and T(V,) = 0.

-
X«
"
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R
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[ Yo d

7(X) = projection of 2D onto line { :{(x,y) Ty = %x}

>

A
— —
\&( V1

\/

71 || 0 and 72J_;)1

So for any? € Rz, T(?) = T(cJ’l +6‘272) = T(Clvl) + T(CQVQ) = 6‘171 + 072 = 6171.

Therefore, in B-coords, we send |: ‘I :| to |: 601 :|
(&)

So in B-coords, T'is represented by B such that:

R R

B¢

So, B, the B-matrix of 7, tells us how to perform 7 in B-coords.

So we found the matrix! But not in the standard basis.

—_
—_
ISS)

Q: How do we recover the "standard" A=

—_ N

)

thl\) G
[ %] N
Ln|° u-l

from the B-matrix S?

\/



So A= SBS™'.

4 -3 10 = <
For our line {, T(¥’) = AY = SBS™'Y = 3
3 4 00

34

Observethat:@=span|: 4 :|,3{|: K :|,|: - :|}, S=|: + 3 :|, S1=%|: 43 :|
3 3 4 -3 4

Using a "commutative diagram," we can construct the projection onto { in pieces.

(commutative diagrams can be used to represent function composition)

B

- - (1)1,
o]

We say a diagram commutes if all "paths" between some start/end points give the same overall function.

16 12
2 _ 25 25 - i1y
I Lo X (we found it!)
25 25 25 25
, 4 -3 1 0 = 2 >
© Reflection across ( would be »o» (V2 sent to —v 5, not 0)
3 4 0 -1 SR

different basis.

Algebraically: A= SBS™!

-~ AS-SB = S 'AS-B.

—_

Example: From above:

N|—= N =
W |
W

2

12 N[ 10 ]
N .
a5 00
Recall: Given linear transformation L :R” —-R”,

| |
matrix representation of L is: A : =

L(eé) L(éy) ..

Definition (similar matrices): A is similar to B, written A ~ B, if they represent same linear transformation, but possibly in a



. ) x—4y ) ) 1 -1
Example: Find matrix form B of L(x,y) = with respect to basis B = , .
—2x+ 3y 1 1

I -1 % % — — 1 -4
s=| st AL ) aem vz]:[L@l) L(2>) ] -
2 2

-2 3
1 -4 1 -1 | 1o
-2 3 11 2 5 |
Verifying: Let’s characterize €1, ¢ in B-coords, apply B, and see if B send these vectors to the same location as A does

L, 1 1 7 S 5 0
Notice ¢ = — 8! = =[e1]pg and €, = —
0 0 —% 1

Applying B, we get: B[¢1]3 =

[

= [€2]3.

O|= o=

e [ I B E

Videos explaining linear algebra with visually spectacular and intuitive explanations, see:
Youtube.com/watch?v=P2LTAUO1TdA&list=PLZHQObOWTQDPD3MizzM2x VFitgF8hE ab



Other Potentially Useful Materials (used in previous classes I've taught)

Domain

| —
Domain-— —>

A function f : X - Y contains 3 pieces of information:
¢ Domain: X
¢ Codomain: Y

¢ A rule sending elements from domain to codomain: f'

Example: f{x) = x?. New notation: / :R—R where x = x? (x maps to x?).

sinx
Example: /:R® ->R*where | y |~ |: :|
y +z

Linear Transformation, a special type of function

Linear Transformation: 7 :R” —-R” is a function which takes in values from R™ (vectors) and outputs values

in R” (vectors) and also satisfies T(a# + bV) = aT(i) + bT(V), for all a,b €R and %,V eR™.
Recall: A linear combination of vectors 7,V is a vector of the form au + bv.

Linear transformations are functions which "preserve" linear combinations.

x
x
Example: Is 7 :R? ->R? where |: :| - | y—x | alinear transformation?
y

y

axy + bx,
=T
ay1 + by,



axi + bx,
(ay1 + by2) — (ax; + bxz)
ayi + by,

!
<
=
!
=
+
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<
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!
>
[\S)
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Example: Is f{x) = 3x a linear transformation?

flax + by) = 3(ax + by) = 3ax + 3by = a3x + b3y = af(x) + bf(y).

2
Example: Is 7 :R? -R? where|: x :| - |: );) :|alinear transformation?
y

(DD
e (DAL DL

Linear Transformations Theorem: 7 :R™ —R” is linear if (and only if):
¢ T(V+w) = T(V) + T(w), forall V,w eR™, and

¢ T(kV) = kT(V), for all v eR”™ and all scalars k.

X1
Example: Let ¥ = : eR” and AeR™".

Xm
Observe: X = X1 €1 +... +Xp €.
S0, AX¥ =A(x1@1 +...4xnCm) =A(x1€1) +... +A(xwen) = x1A(C1) +...+xyA(Zn).  (Chap. 1)

All information about linear transformations is encoded in where the transformation sends the basis vectors ;.



In R?, using standard basis:
31 1 3 31 0 1
A€, = = and A€, = = .
02 0 0 0 2 1 2
So, a linear transformation sends the 1st basis vector to the 1st column vector, and the 2nd basis vector to the 2nd column.

Matrix Columns of a Linear Transformation Theorem: Given linear transformation 7 :R™ —-R".

| | |
Matrix of Tis: A= | T(¢) T(é>) ... T(en)

Linear Transformation Matrix Correspondence: 7 :R” —»R” is a linear transformation < T7(X) = AX, for some A",
b

Proof for 7 :R? -»R2: First we show =.

Now we show <.

X

y

1 0
and its effect on |: 0 :|, |: | :| is the same as 7.

So AY is a linear transformation. [ |

Recall AY =A|: :| is a linear transformation (as seen earlier),



— -
LT, Zero Identity Thm: If 7 :R™ -R”, then T(O) = 0.

Proof: Let 6) eR™ and T be a linear transformation.

Then, T (6) =

- T(o -6’)

=0-T(6)> — 0 eR".

Alternatively: T (6)
=T(X -X)
= 7(X) - I(X) = 0 R".

Corollary: The Contrapositive.

Invertibility

Invertible Transformation: 7 :R” —R" where there exists a map S :R” -»R” such that 7(S(¥)) = ¥ and S(T(¥/)) = ¥.

We usually denote the "inverse" Sas T~
Example: Show that 7 :R—R where x — 3x and S :R-R where x — %x are inverses.
T(S(x))
- 7(4)
=3.(4x) =x and

S(T(x)) = S(3x)



= %(3)() =X [

0
Example: Does 7 :R? ->R? where |: * :| — |: :| have an inverse?
y x

1 0 1 0 |
Observe that: — , and — .
1 1 2 1
. 0 1 0 1]
If S exists, then S|: . :| =|: : :|, and S|: : :|= 5 | Whoops.

Practice

Which are linear transformations? Briefly justify.

2x + 3y 2x + 3y X 3xy

X X
a)|: :|'—> x—y b)|: :|'—> x—y | y |—| 5z
4 y 4 y+1 z Txz

For each which is a linear transform, find the matrix representing it.

1 2 0 : | | 22
For a) : |: 0 :|'—> 1|, |: | :|'—> -1 |,s0A=| T¢, Te, =1 1 -1
0 1 L 0 1



