Applied Linear Algebra

7.2 Linear Transformations

Consider linear function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that maps n D Euclidean space to itself. L maps a $\vec{x} \in \mathbb{R}^{n}$ to $L[\vec{x}]=\mathbf{A}^{n \times m} \vec{x}$. When thinking of it geometrically like this, we refer to L as a linear transformations (LT).

In \mathbb{R}^{2}, they have the form: $L\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}a x+b y \\ c x+d y\end{array}\right]$,
where $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Types of LTs in \mathbb{R}^{2}

Rotation Matrices: $\mathbf{R}_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$, rotating vectors through angle θ.

Rotations without reflections occur with proper orthogonal matrices.
That is, matrices \mathbf{Q} that satisfy: $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$ and $\operatorname{det} \mathbf{Q}=+1$.

Rotations without reflections

Alternatively, rotations with reflections occur with improper orthogonal matrices:
\mathbf{Q} Such that $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$ and $|\mathbf{Q}|=-1$.

Rotations with reflections

A proper 3D orthogonal matrix $\mathbf{Q}=\left[\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right]$ with $\vec{u}_{i}=\mathbf{Q} \widehat{e}_{i}$ corresponds to rotation in which \widehat{e}_{i} are rotated to new positions given by orthonormal basis \vec{u}_{i}. Every 3×3 orthogonal matrix corresponds to rotation around a line through the origin in \mathbb{R}^{3} (axis of rotation).

Since the product of two (proper) orthogonal matrices is also (proper) orthogonal, the composition of two rotations is also a rotation.

Unlike 2D case, order in which rotations are performed in 3D is important.
Multiplication of $n \times n$ orthogonal matrices is not commutative when $n \geq 3$.

Example: Rotating first around y-axis, then around x-axis, and then x-axis.
Not the same as around x-axis, then y-axis, then x-axis.

$$
\frac{\pi}{2} \text { around } y \text {, then } x \text {, then } x . \quad \frac{\pi}{2} \text { around } x \text {, then } y \text {, then } x .
$$

see animation in class

LTs from elementary matrices:

- Multiplying a row by a scalar $\Rightarrow \quad$ stretching and/or reflection transformation.

Example: $\mathbf{A}=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right] \Rightarrow L\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}2 x \\ y\end{array}\right]$.

stretching

Example: $\mathbf{A}=\left[\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$,
corresponds to reflection through y-axis followed by previous stretching.

reflection through y-axis then stretching

- Row interchange \Rightarrow reflection through diagonal $y=x$.

Example: $\mathbf{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \Rightarrow L\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}y \\ x\end{array}\right]$.

reflection through $y=x$

- Adding a multiple of one row to another \Rightarrow Shear along some axis.

Example: $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \Rightarrow L\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x+2 y \\ y\end{array}\right]$.

Noninvertible LTs \Rightarrow projection from the plane onto the origin, or onto a line through the origin.

Example: $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right] \Rightarrow L\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x+2 y \\ 0\end{array}\right]$.

See animation in class

Generalizing

In higher dimensions, elementary matrices can produce LTs of types:

- stretch in a single coordinate direction.
- reflect through a coordinate (hyper)plane.
- reflect through a diagonal (hyper)plane.
- shear along a coordinate axis.

And all invertible LTs can be constructed from a sequence of these types.

The last type of LT is noninvertible, and so is not the result of an elementary matrix:

- orthogonally project onto a lower dimensional subspace.

And $A L L$ transformations can be built up from the previous five types.

Change of Basis

Up until now, vector notation $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ was meant to indicate: $x_{1} \widehat{e}_{1}+x_{2} \widehat{e}_{2}+x_{3} \widehat{e}_{3}$.

Indeed, when you have seen matrix multiplication $\mathbf{A} \vec{x}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right] \vec{x}$, we have intended it to mean:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left(x_{1} \widehat{e}_{1}+x_{2} \widehat{e}_{2}+x_{3} \widehat{e}_{3}\right) \quad \text { (Std unit basis } \widehat{e}_{1}, \widehat{e}_{2}, \widehat{e}_{3} \text { in domain) }
$$

$$
\begin{aligned}
& =x_{1}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \widehat{e}_{1}+x_{2}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \widehat{e}_{2}+x_{3}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \widehat{e}_{3} \\
& =x_{1}\left[\begin{array}{l}
1 \\
4
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{l}
3 \\
6
\end{array}\right]
\end{aligned}
$$

$$
=\left(x_{1}+2 x_{2}+3 x_{3}\right) \widehat{e}_{1}^{\prime}+\left(4 x_{1}+5 x_{2}+6 x_{3}\right) \widehat{e}_{2}^{\prime} . \quad\left(\text { Std unit basis } \widehat{e}_{1}^{\prime}, \widehat{e}_{2}^{\prime} \text { in codomain }\right)
$$

However, observe that this relies on the choice of standard unit basis vectors.

In some applications, one can gain additional insight, or create computational efficiency by adopting a different basis.

$$
r=4 \cos (3 \theta)
$$

Polar coordinates make this shape simple to express.
In cartesian coordiates, we have: $x^{4}+y^{4}+2 x^{2} y^{2}-4 x^{3}+12 x y^{2}=0 . \quad(!?!)$

Similarly, in linear algebra, coordinates can make all the difference.

Geometry may suggest convenient coordinates

Definition: If $\vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m}$, where $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}$, then we say $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{m}\end{array}\right]$ are the \mathcal{B}-coordinates of \vec{x}.
(1) \vec{x} in standard coordinates is denoted simply as \vec{x}.
\vec{x} in \mathcal{B}-coordinates is denoted $[\vec{x}]_{\mathcal{B}}$.

Theorem: Let $L: V \rightarrow W$ be a linear function. Suppose V has basis $\mathcal{B}_{v}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and W has basis $\mathcal{B}_{w}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{m}\right\}$.
We can write: $\vec{v}=x_{1} \vec{v}_{1}+\ldots+x_{n} \vec{v}_{n} \in V, \vec{w}=y_{1} \vec{w}_{1}+\ldots+y_{m} \vec{w}_{m} \in W$, where $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ are the coordinates of \vec{v} relative to the basis of V and $\vec{y}=\left(y_{1}, \ldots, y_{m}\right)^{T}$ are those of \vec{w} relative to the basis of W. Then, in those coordinates, there exists $\mathbf{S}^{m \times n}$ such that the linear function $\vec{w}=L[\vec{v}]$ is given by multiplication by \mathbf{S}, so $\vec{y}=\mathbf{S} \vec{x}$.

Proof: We mimic proof of Theorem 7.5 (previous section), in which we discovered the matrix representative by

$$
L[\vec{x}]=\mathbf{A} \vec{x}=\left[L\left[\vec{e}_{1}\right] \ldots L\left[\vec{e}_{n}\right]\right] \vec{x}=x_{1} L\left[\vec{e}_{1}\right]+\ldots+x_{n} L\left[\vec{e}_{n}\right] .
$$

This time, we'll be replacing the \vec{e}_{1} with more general basis vectors.

In other words, we apply L to the basis vectors of V and express the result as a linear combination of the basis vectors in W. Byy linarity, we have:

$$
\begin{aligned}
\vec{w}= & L[\vec{v}]=L\left[x_{1} \vec{v}_{1}+\ldots+x_{n} \vec{v}_{n}\right] \quad(\text { def. of } \vec{v}) \\
& =x_{1} L\left[\vec{v}_{1}\right]+\ldots+x_{n} L\left[\vec{v}_{n}\right] \quad \text { (linearity) } \\
& =x_{1} \sum_{i=1}^{m} s_{i 1} \vec{w}_{i}+\ldots+x_{n} \sum_{i=1}^{m} s_{i n} \vec{w}_{i} \quad\left(L\left[\vec{v}_{i}\right] \text { live in } W, \text { and so linear combo of } \vec{w}_{1}, \ldots, \vec{w}_{m}\right) \\
& =\sum_{j=1}^{n} x_{j} \sum_{i=1}^{m} s_{i j} \vec{w}_{i}=\sum_{j=1}^{n} \sum_{i=1}^{m} s_{i j} x_{j} \vec{w}_{i}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} s_{i j} x_{j}\right) \vec{w}_{i}, \quad \quad \text { (arithmetic) }
\end{aligned}
$$

and so we find $y_{i}=\sum_{j=1}^{n} s_{i j} x_{j}$, and $\vec{y}=\mathbf{S} \vec{x}$, where $\mathbf{S}=\left[\vec{s}_{1} \ldots \vec{s}_{n}\right]$ and $\vec{s}_{j}=\left(s_{1 j}, \ldots, s_{m j}\right)$, as claimed.

Conversion: \mathcal{B}-coords \rightarrow Std (easy, always possible)

Example: Given $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -3\end{array}\right]\right\}$, basis of \mathbb{R}^{2}, find std coords for:

- $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}-3 \\ 7\end{array}\right]$

$$
\vec{x}=-3\left[\begin{array}{l}
1 \\
1
\end{array}\right]+7\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right]\left[\begin{array}{c}
-3 \\
7
\end{array}\right]=\left[\begin{array}{cc}
\mid & \mid \\
\vec{v}_{1} & \vec{v}_{2} \\
\mid & \mid
\end{array}\right][\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}
11 \\
-24
\end{array}\right]
$$

- $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}8 \\ -2\end{array}\right]$

$$
\vec{x}=8\left[\begin{array}{l}
1 \\
1
\end{array}\right]-2\left[\begin{array}{c}
2 \\
-3
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
1 & -3
\end{array}\right]\left[\begin{array}{c}
8 \\
-2
\end{array}\right]=\left[\begin{array}{c}
4 \\
14
\end{array}\right] .
$$

In general, given $[\vec{x}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{n}\end{array}\right]: \quad \vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}$

$$
=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\mathbf{S}[\vec{x}]_{\mathcal{B}}
$$

So $\vec{x}=\mathbf{S}[\vec{x}]_{\mathcal{B}}$, where \mathbf{S} 's columns are the basis vectors.

Example: Again with $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -3\end{array}\right]\right\}$, find \mathcal{B}-coords for $\vec{x}=\left[\begin{array}{l}7 \\ 2\end{array}\right]$

We know $\vec{x}=\mathbf{S}[\vec{x}]_{\mathcal{B}}$, i.e. $\left[\begin{array}{l}7 \\ 2\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 1 & -3\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$.

Method 1: $\left.\begin{array}{l}c_{1}+2 c_{2}=7 \\ c_{1}-3 c_{2}=2\end{array}\right\}$ Solve.

Method 2: $\vec{x}=\mathbf{S}[\vec{x}]_{\mathcal{B}} \quad \Rightarrow \quad[\vec{x}]_{\mathcal{B}}=\mathbf{S}^{-1} \vec{x}$

$$
=-\frac{1}{5}\left[\begin{array}{cc}
-3 & -2 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
7 \\
2
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right] .
$$

Example: $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ form basis for $V=\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right) \subset \mathbb{R}^{3}$.
Find $[\vec{x}]_{\mathcal{B}}$ if $\vec{x}=\left[\begin{array}{c}0 \\ -1 \\ 10\end{array}\right]$
$c_{1}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{c}0 \\ -1 \\ 10\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}1 & 1 & \mid \\ 1 & 2 & \mid \\ 1 & 3 & 10\end{array}\right]$
$\rightarrow\left[\begin{array}{cc|c}1 & 1 & 0 \\ 0 & 1 & \mid \\ 0 & 2 & 10\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 1 & \mid \\ 0 & 1 & \mid \\ 0 & 0 & 12\end{array}\right]$

Resulting system has no solution. $(\vec{x} \notin V)$ What does this mean?

Consider $T(\vec{x})=$ "projection of \mathbb{R}^{2} onto line $\ell=\left\{(x, y): y=\frac{3}{4} x\right\}$ ".

Turns out, $T(\vec{x})=\left[\begin{array}{cc}\frac{16}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{9}{25}\end{array}\right] \vec{x}$. But why?

How would we find this? Let's find out.

Choose \vec{v}_{1} to span ℓ, and $\vec{v}_{2} \neq \overrightarrow{0}$ such that $\vec{v}_{2} \perp \vec{v}_{1}$.

$T(\vec{x})=$ projection of 2 D onto line $\ell=\left\{(x, y): y=\frac{3}{4} x\right\}$

Example: $\vec{v}_{1}=\left[\begin{array}{l}4 \\ 3\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$.
$\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ forms a basis of \mathbb{R}^{2}.

Any $\vec{x} \in \mathbb{R}^{2}$ can be written uniquely as combination of \vec{v}_{1}, \vec{v}_{2}.

$\vec{v}_{1} \| \ell$ and $\vec{v}_{2} \perp \vec{v}_{1}$

Notice that with this choice of vectors, $T\left(\vec{v}_{1}\right)=\vec{v}_{1}$, and $T\left(\vec{v}_{2}\right)=\overrightarrow{0}$.

So for any $\vec{x} \in \mathbb{R}^{2}, T(\vec{x})=T\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}\right)=T\left(c_{1} \vec{v}_{1}\right)+T\left(c_{2} \vec{v}_{2}\right)=c_{1} \vec{v}_{1}+0 \vec{v}_{2}=c_{1} \vec{v}_{1}$.

Therefore, in \mathcal{B}-coords, we send $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ to $\left[\begin{array}{c}c_{1} \\ 0\end{array}\right]$.

So in \mathcal{B}-coords, T is represented by \mathbf{B} such that:
$\mathbf{B} \vec{c}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}c_{1} \\ 0\end{array}\right]$.

So, \mathbf{B}, the \mathcal{B}-matrix of T, tells us how to perform T in \mathcal{B}-coords.

So we found the matrix! But not in the standard basis.
$\mathbf{Q}:$ How do we recover the "standard" $\mathbf{A}=\left[\begin{array}{cc}\frac{16}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{9}{25}\end{array}\right]$ from the \mathcal{B}-matrix \mathbf{S} ?

Observe that: $\ell=\operatorname{span}\left[\begin{array}{l}4 \\ 3\end{array}\right], \mathcal{B}=\left\{\left[\begin{array}{l}4 \\ 3\end{array}\right],\left[\begin{array}{c}-3 \\ 4\end{array}\right]\right\}, \mathbf{S}=\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right], \quad \mathbf{S}^{-1}=\frac{1}{25}\left[\begin{array}{cc}4 & 3 \\ -3 & 4\end{array}\right]$.

Using a "commutative diagram," we can construct the projection onto ℓ in pieces.
(commutative diagrams can be used to represent function composition)

We say a diagram commutes if all "paths" between some start/end points give the same overall function.

So $\mathbf{A}=\mathbf{S B S}^{-1}$.

For our line $\ell, T(\vec{x})=\mathbf{A} \vec{x}=\mathbf{S B S}^{-1} \vec{x}=\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\frac{4}{25} & \frac{3}{25} \\ -\frac{3}{25} & \frac{4}{25}\end{array}\right] \vec{x}=\left[\begin{array}{cc}\frac{16}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{9}{25}\end{array}\right] \vec{x}$.
(we found it!)
(1) Reflection across ℓ would be $\left[\begin{array}{cc}4 & -3 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{cc}\frac{4}{25} & \frac{3}{25} \\ -\frac{3}{25} & \frac{4}{25}\end{array}\right] \quad\left(\vec{v}_{2}\right.$ sent to $-\vec{v}_{2}$, not $\left.\overrightarrow{0}\right)$

Definition (similar matrices): \mathbf{A} is similar to \mathbf{B}, written $\mathbf{A} \sim \mathbf{B}$, if they represent same linear transformation, but possibly in a different basis.

Algebraically: $\mathbf{A}=\mathbf{S B S}^{-1} \Rightarrow \mathbf{A S}=\mathbf{S B} \Rightarrow \mathbf{S}^{-1} \mathbf{A S}=\mathbf{B}$.

Example: From above: $\left[\begin{array}{cc}\frac{16}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{9}{25}\end{array}\right] \sim\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

Recall: Given linear transformation $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$,
matrix representation of L is: $\mathbf{A}:=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ L\left(\vec{e}_{1}\right) & L\left(\vec{e}_{2}\right) & \ldots & L\left(\vec{e}_{m}\right) \\ \mid & \mid & & \mid\end{array}\right]$.

Example: Find matrix form \mathbf{B} of $L(x, y)=\left[\begin{array}{c}x-4 y \\ -2 x+3 y\end{array}\right]$ with respect to basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
$\mathbf{S}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right], \quad \mathbf{S}^{-1}=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right], \quad \mathbf{A}=\left[\begin{array}{ll}\vec{v}_{1} & \vec{v}_{2}\end{array}\right]=\left[\begin{array}{ll}L\left(\vec{e}_{1}\right) & L\left(\vec{e}_{2}\right)\end{array}\right]=\left[\begin{array}{cc}1 & -4 \\ -2 & 3\end{array}\right]$.

Therefore: $\mathbf{B}=\mathbf{S}^{-1} \mathbf{A} \mathbf{S}=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right]\left[\begin{array}{cc}1 & -4 \\ -2 & 3\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 2 & 5\end{array}\right]$.

Verifying: Let's characterize \vec{e}_{1}, \vec{e}_{2} in \mathcal{B}-coords, apply \mathbf{B}, and see if \mathbf{B} send these vectors to the same location as \mathbf{A} does.
Notice $\vec{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow \mathbf{S}^{-1}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2}\end{array}\right]=\left[\vec{e}_{1}\right]_{\mathcal{B}}$ and $\vec{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]=\left[\vec{e}_{2}\right]_{\mathcal{B}}$.

Applying B, we get: $\mathbf{B}\left[\vec{e}_{1}\right]_{\mathcal{B}}=\left[\begin{array}{cc}-1 & 0 \\ 2 & 5\end{array}\right]\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} \\ -\frac{3}{2}\end{array}\right]$,
and $\mathbf{B}\left[\vec{e}_{2}\right]_{\mathcal{B}}=\left[\begin{array}{cc}-1 & 0 \\ 2 & 5\end{array}\right]\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} \\ \frac{7}{2}\end{array}\right]$.

In std coords: $\mathbf{B}\left[\vec{e}_{1}\right]_{\mathcal{B}}=-\frac{1}{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]-\frac{3}{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ -2\end{array}\right]=\vec{v}_{1}$

$$
\mathbf{B}\left[\vec{e}_{2}\right]_{\mathcal{B}}=-\frac{1}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{7}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-4 \\
3
\end{array}\right]=\vec{v}_{2}
$$

Videos explaining linear algebra with visually spectacular and intuitive explanations, see:
Youtube.com/watch?v=P2LTAUO1TdA\&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

Other Potentially Useful Materials

A function $f: X \rightarrow Y$ contains 3 pieces of information:

- Domain: X
- Codomain: Y
- A rule sending elements from domain to codomain: f

Example: $f(x)=x^{2}$. New notation: $f: \mathbb{R} \rightarrow \mathbb{R}$ where $x \mapsto x^{2}\left(x\right.$ maps to $\left.x^{2}\right)$.

Example: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ where $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \rightarrow\left[\begin{array}{c}\sin x \\ y+z\end{array}\right]$

Linear Transformation, a special type of function

Linear Transformation: $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a function which takes in values from \mathbb{R}^{m} (vectors) and outputs values in \mathbb{R}^{n} (vectors) and also satisfies $T(a \vec{u}+b \vec{v})=a T(\vec{u})+b T(\vec{v})$, for all $a, b \in \mathbb{R}$ and $\vec{u}, \vec{v} \in \mathbb{R}^{m}$.

Recall: A linear combination of vectors \vec{u}, \vec{v} is a vector of the form $a \vec{u}+b \vec{v}$.

Linear transformations are functions which "preserve" linear combinations.

Example: Is $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ where $\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{c}x \\ y-x \\ y\end{array}\right]$ a linear transformation?

$$
\begin{aligned}
& T\left(a\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+b\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right) \\
& =T\left(\left[\begin{array}{l}
a x_{1}+b x_{2} \\
a y_{1}+b y_{2}
\end{array}\right]\right)
\end{aligned}
$$

$=\left[\begin{array}{c}a x_{1}+b x_{2} \\ \left(a y_{1}+b y_{2}\right)-\left(a x_{1}+b x_{2}\right) \\ a y_{1}+b y_{2}\end{array}\right]$
$=a\left[\begin{array}{c}x_{1} \\ y_{1}-x_{1} \\ y_{1}\end{array}\right]+b\left[\begin{array}{c}x_{2} \\ y_{2}-x_{2} \\ y_{2}\end{array}\right]$
$=a T\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]\right)+b T\left(\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right)$.

Example: Is $f(x)=3 x$ a linear transformation?
$f(a x+b y)=3(a x+b y)=3 a x+3 b y=a 3 x+b 3 y=a f(x)+b f(y)$.

Example: Is $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{c}x^{2} \\ 0\end{array}\right]$ a linear transformation?

Observe: $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right)=T\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

However: $T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)+T\left(\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0\end{array}\right]!?!$

Linear Transformations Theorem: $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear if (and only if):

- $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$, for all $\vec{v}, \vec{w} \in \mathbb{R}^{m}$, and
- $T(k \vec{v})=k T(\vec{v})$, for all $\vec{v} \in \mathbb{R}^{m}$ and all scalars k.

Example: Let $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{m}\end{array}\right] \in \mathbb{R}^{m}$ and $\mathbf{A} \in \mathbb{R}^{n \times m}$.

Observe: $\vec{x}=x_{1} \vec{e}_{1}+\ldots+x_{m} \vec{e}_{m}$.

So, $\mathbf{A} \vec{x}=\mathbf{A}\left(x_{1} \vec{e}_{1}+\ldots+x_{m} \vec{e}_{m}\right)=\mathbf{A}\left(x_{1} \vec{e}_{1}\right)+\ldots+\mathbf{A}\left(x_{m} \vec{e}_{m}\right)=x_{1} \mathbf{A}\left(\vec{e}_{1}\right)+\ldots+x_{m} \mathbf{A}\left(\vec{e}_{m}\right)$.

All information about linear transformations is encoded in where the transformation sends the basis vectors \vec{e}_{i}.

In \mathbb{R}^{2}, using standard basis:

$$
\mathbf{A} \vec{e}_{1}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right] \text { and } \mathbf{A} \vec{e}_{2}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

So, a linear transformation sends the 1 st basis vector to the 1 st column vector, and the 2 nd basis vector to the 2 nd column.

Matrix Columns of a Linear Transformation Theorem: Given linear transformation $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.
Matrix of T is: $\mathbf{A}=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & \ldots & T\left(\vec{e}_{m}\right) \\ \mid & \mid & & \mid\end{array}\right]$.

Linear Transformation Matrix Correspondence: $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a linear transformation $\quad \Leftrightarrow \quad T(\vec{x})=\mathbf{A} \vec{x}$, for some $\mathbf{A}^{n \times m}$.

Proof for $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$: First we show \Rightarrow.

Suppose $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ c\end{array}\right]$ and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}b \\ d\end{array}\right]$.

Note if $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $\mathbf{A}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ c\end{array}\right]$ and $\mathbf{A}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}b \\ d\end{array}\right]$.

Now we show \Leftarrow.

Recall $\mathbf{A} \vec{x}=\mathbf{A}\left[\begin{array}{l}x \\ y\end{array}\right]$ is a linear transformation (as seen earlier),
and its effect on $\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is the same as T.

So $\mathbf{A} \vec{x}$ is a linear transformation.

LT, Zero Identity Thm: If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, then $T(\overrightarrow{0})=\overrightarrow{0}$.

Proof: Let $\overrightarrow{0} \in \mathbb{R}^{m}$ and T be a linear transformation.

Then, $T(\overrightarrow{0})=$

$$
\begin{aligned}
& =T(0 \cdot \overrightarrow{0}) \\
& =0 \cdot T(\overrightarrow{0})=\overrightarrow{0} \in \mathbb{R}^{n}
\end{aligned}
$$

Alternatively: $T(\overrightarrow{0})$

$$
\begin{aligned}
& =T(\vec{x}-\vec{x}) \\
& =T(\vec{x})-T(\vec{x})=\overrightarrow{0} \in \mathbb{R}^{n} .
\end{aligned}
$$

Corollary: The Contrapositive.

Invertibility

Invertible Transformation: $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ where there exists a map $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $T(S(\vec{x}))=\vec{x}$ and $S(T(\vec{y}))=\vec{y}$. We usually denote the "inverse" S as T^{-1}.

Example: Show that $T: \mathbb{R} \rightarrow \mathbb{R}$ where $x \mapsto 3 x$ and $S: \mathbb{R} \rightarrow \mathbb{R}$ where $x \mapsto \frac{1}{3} x$ are inverses.

$$
T(S(x))
$$

$$
=T\left(\frac{1}{3} x\right)
$$

$=3 \cdot\left(\frac{1}{3} x\right)=x \quad$ and
$S(T(x))=S(3 x)$

$$
=\frac{1}{3}(3 x)=x .
$$

Example: Does $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{l}0 \\ x\end{array}\right]$ have an inverse?

Observe that: $\left[\begin{array}{l}1 \\ 1\end{array}\right] \mapsto\left[\begin{array}{l}0 \\ 1\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 2\end{array}\right] \mapsto\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
If S exists, then $S\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, and $S\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right] . \quad$ Whoops.

Practice

Which are linear transformations? Briefly justify.
a) $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{c}2 x+3 y \\ x-y \\ y\end{array}\right]$
b) $\left[\begin{array}{l}x \\ y\end{array}\right] \mapsto\left[\begin{array}{c}2 x+3 y \\ x-y \\ y+1\end{array}\right]$
c) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \mapsto\left[\begin{array}{l}3 x y \\ 5 y z \\ 7 x z\end{array}\right]$.

For each which is a linear transform, find the matrix representing it.

For a) : $\left[\begin{array}{l}1 \\ 0\end{array}\right] \mapsto\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right], \quad\left[\begin{array}{l}0 \\ 1\end{array}\right] \mapsto\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$, so $\mathbf{A}=\left[\begin{array}{cc}\mid & \mid \\ T \vec{e}_{1} & \overrightarrow{T e}_{2} \\ \mid & \mid\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ 1 & -1 \\ 0 & 1\end{array}\right]$.

