
Applied Linear Algebra

Instructor: Jodin Morey moreyjc@umn.edu

7.2 Linear Transformations
Consider linear function L :Rn Rn that maps nD Euclidean space to itself. L maps a x  Rn to Lx   Anm x .

When thinking of it geometrically like this, we refer to L as a linear transformations (LT).

In R2, they have the form: L
x

y


ax  by

cx  dy
,

where A 
a b

c d
.

Types of LTs in R2

Rotation Matrices: R 
cos  sin

sin cos
, rotating vectors through angle .

Rotations without reflections occur with proper orthogonal matrices.

That is, matrices Q that satisfy: QTQ  I and detQ  1.

Rotations without reflections

Alternatively, rotations with reflections occur with improper orthogonal matrices:

Q Such that QTQ  I and |Q|  1.

Rotations with reflections

A proper 3D orthogonal matrix Q  u 1 u 2 u 3 with u i  Qe i corresponds to rotation in which
e i

are rotated to new positions given by orthonormal basis u i. Every 3  3 orthogonal matrix corresponds

to rotation around a line through the origin in R3 (axis of rotation).



Since the product of two (proper) orthogonal matrices is also (proper) orthogonal, the composition of two rotations is also a
rotation.

Unlike 2D case, order in which rotations are performed in 3D is important.

Multiplication of n  n orthogonal matrices is not commutative when n  3.

Example: Rotating first around y-axis, then around x-axis, and then x-axis.

Not the same as around x-axis, then y-axis, then x-axis. 

2 around y, then x, then x. 

2 around x, then y, then x.

see animation in class

LTs from elementary matrices:
 Multiplying a row by a scalar  stretching and/or reflection transformation.

Example: A 
2 0

0 1
 L

x

y


2x

y
.

stretching

Example: A 
2 0

0 1


2 0

0 1

1 0

0 1
,

corresponds to reflection through y-axis followed by previous stretching.

reflection through y-axis then stretching

 Row interchange  reflection through diagonal y  x.

Example: A 
0 1

1 0
 L

x

y


y

x
.

reflection through y  x

 Adding a multiple of one row to another  Shear along some axis.

Example: A 
1 2

0 1
 L

x

y


x  2y

y
.

Shear

Noninvertible LTs  projection from the plane onto the origin, or onto a line through the origin.



Example: A 
1 2

0 0
 L

x

y


x  2y

0
.

See animation in class

Generalizing
In higher dimensions, elementary matrices can produce LTs of types:

 stretch in a single coordinate direction.

 reflect through a coordinate (hyper)plane.

 reflect through a diagonal (hyper)plane.

 shear along a coordinate axis.

And all invertible LTs can be constructed from a sequence of these types.

The last type of LT is noninvertible, and so is not the result of an elementary matrix:

 orthogonally project onto a lower dimensional subspace.

And ALL transformations can be built up from the previous five types.

Change of Basis

Up until now, vector notation x1,x2,x3  was meant to indicate: x1
e 1  x2

e 2  x3
e 3.

Indeed, when you have seen matrix multiplication Ax 
1 2 3

4 5 6
x , we have intended it to mean:

1 2 3

4 5 6

x1

x2

x3


1 2 3

4 5 6
x1

e 1  x2
e 2  x3

e 3 (Std unit basis e 1,
e 2,

e 3 in domain)



 x1
1 2 3

4 5 6

e 1  x2
1 2 3

4 5 6

e 2  x3
1 2 3

4 5 6

e 3

 x1
1

4
 x2

2

5
 x3

3

6

 x1  2x2  3x3
e 1
  4x1  5x2  6x3

e 2
 . (Std unit basis e 1

 ,e 2
 in codomain)

However, observe that this relies on the choice of standard unit basis vectors.

In some applications, one can gain additional insight, or create computational efficiency by adopting a different basis.

r  4cos3

Polar coordinates make this shape simple to express.
In cartesian coordiates, we have: x4  y4  2x2y2  4x3  12xy2  0. (!?!)

Similarly, in linear algebra, coordinates can make all the difference.

u , v -coordinates better than e 1,
e 2



Geometry may suggest convenient coordinates

Definition: If x  c1 v 1 cm v m, where B  v 1, , v m, then we say x B 

c1



cm

are the B-coordinates of x .

x in standard coordinates is denoted simply as x .

x in B coordinates is denoted x 
B
. . . .

Theorem: Let L : V  W be a linear function. Suppose V has basis Bv  v 1, , v n and W has basis Bw  w1, ,wm.

We can write: v  x1 v 1 xn v n  V, w  y1w1 ymwm  W, where x  x1, ,xnT are the coordinates of v

relative to the basis of V and y  y1, ,ymT are those of w relative to the basis of W. Then, in those coordinates,

there exists Smn such that the linear function w  Lv  is given by multiplication by S, so y  Sx .

Proof: We mimic proof of Theorem 7.5 (previous section), in which we discovered the matrix representative by

Lx   Ax  L e 1 ... L e n x  x1L e 1  ...  xnL e n .

This time, we’ll be replacing the e 1 with more general basis vectors.

In other words, we apply L to the basis vectors of V and express the result as a linear combination of the basis vectors in W.

Byy linarity, we have:

w  Lv   Lx1 v 1 xn v n  (def. of v )

 x1Lv 1  xnLv n  (linearity)

 x1 i1
m si1w i xn i1

m sinw i (Lv i  live inW, and so linear combo of w1, ,wm)

  j1
n x j i1

m sijw i   j1
n  i1

m sijx jw i   i1
m  j1

n sijx j w i, (arithmetic)

and so we find y i   j1
n sijx j, and y  Sx , where S   s 1 ... s n and s j  s1j, . . . , smj, as claimed. 



Conversion: B-coords  Std (easy, always possible)

Example: Given B  v 1, v 2 
1

1
,

2

3
, basis of R2, find std coords for:

 x 
B


3

7
. . .

x  3
1

1
 7

2

3


1 2

1 3

3

7


| |

v 1 v 2

| |

x 
B


11

24
.

 x 
B


8

2
. . .

x  8
1

1
 2

2

3


1 2

1 3

8

2


4

14
.

In general, given x 
B


c1



cn

: x  c1 v 1 cn v n

 v 1 v 2  v n

c1



cn

 Sx 
B
.

So x  Sx 
B
, where S’s columns are the basis vectors.



Conversion: Std  B-coordinates (hard, not always possible)

Example: Again with B 
1

1
,

2

3
, find B-coords for x 

7

2
.

We know x  Sx 
B
, i.e.

7

2


1 2

1 3

c1

c2
. ...

Method 1:
c1  2c2  7

c1  3c2  2
Solve.

Method 2: x  Sx 
B

 x 
B
 S1 x . . .

  1
5

3 2

1 1

7

2


5

1
.

Example: v 1 

1

1

1

, v 2 

1

2

3

form basis for V  spanv 1, v 2  R3.

Find x 
B

if x 

0

1

10

. . .

c1

1

1

1

 c2

1

2

3



0

1

10



1 1 | 0

1 2 | 1

1 3 | 10

. . .



1 1 | 0

0 1 | 1

0 2 | 10



1 1 | 0

0 1 | 1

0 0 | 12

(!?!)

Resulting system has no solution. x  V What does this mean?

How can B-coordinates make my life easier?



Consider Tx   "projection of R2 onto line   x,y : y  3
4 x ".

Turns out, Tx  
16
25

12
25

12
25

9
25

x . But why?

How would we find this? Let’s find out.

Choose v 1 to span , and v 2  0 such that v 2v 1.
T x   projection of 2D onto line   x,y : y  3

4 x

Example: v 1 
4

3
, v 2 

3

4
.

B  v 1, v 2 forms a basis of R2.

Any x  R2 can be written uniquely as combination of v 1, v 2.

v 1   and v 2v 1

Notice that with this choice of vectors, Tv 1  v 1, and Tv 2  0.

So for any x  R2, Tx   Tc1 v 1  c2 v 2  Tc1 v 1  Tc2 v 2  c1 v 1  0v 2  c1 v 1.

Therefore, in B-coords, we send
c1

c2
to

c1

0
.

So in B-coords, T is represented by B such that:

Bc 
1 0

0 0

c1

c2


c1

0
.

So, B, the B-matrix of T, tells us how to perform T in B-coords.

So we found the matrix! But not in the standard basis.

Q: How do we recover the "standard" A
16
25

12
25

12
25

9
25

from the B-matrix S?



Observe that:   span
4

3
, B 

4

3
,

3

4
, S 

4 3

3 4
, S1  1

25

4 3

3 4
.

Using a "commutative diagram," we can construct the projection onto  in pieces.

(commutative diagrams can be used to represent function composition)

We say a diagram commutes if all "paths" between some start/end points give the same overall function.

So A SBS1.

For our line , Tx   Ax  SBS1 x 
4 3

3 4

1 0

0 0

4
25

3
25

 3
25

4
25

x 
16
25

12
25

12
25

9
25

x . (we found it!)

Reflection across  would be
4 3

3 4

1 0

0 1

4
25

3
25

 3
25

4
25

(v 2 sent to v 2, not 0)

Definition (similar matrices): A is similar to B, written A ~ B, if they represent same linear transformation, but possibly in a
different basis.

Algebraically: A SBS1  AS  SB  S
1
AS  B.

Example: From above:
16
25

12
25

12
25

9
25

~
1 0

0 0
.

Recall: Given linear transformation L :Rm Rn,

matrix representation of L is: A : 

| | |

L e 1 L e 2  L e m

| | |

.



Example: Find matrix form B of Lx,y 
x  4y

2x  3y
with respect to basis B 

1

1
,

1

1
.

S 
1 1

1 1
, S1 

1
2

1
2

 1
2

1
2

, A  v 1 v 2  L e 1 L e 2 
1 4

2 3
.

Therefore: B  S1AS 
1
2

1
2

 1
2

1
2

1 4

2 3

1 1

1 1


1 0

2 5
.

Verifying: Let’s characterize e 1, e 2 in B-coords, apply B, and see if B send these vectors to the same location as A does.

Notice e 1 
1

0
 S1

1

0


1
2

 1
2

 e 1B and e 2 
0

1


1
2

1
2

 e 2B.

Applying B, we get: Be 1B 
1 0

2 5

1
2

 1
2


 1

2

 3
2

,

and Be 2B 
1 0

2 5

1
2

1
2


 1

2

7
2

.

In std coords: Be 1B   1
2

1

1
 3

2

1

1


1

2
 v 1

Be 2B   1
2

1

1
 7

2

1

1


4

3
 v 2 

Videos explaining linear algebra with visually spectacular and intuitive explanations, see:
Youtube.com/watch?vP2LTAUO1TdA&listPLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab



Other Potentially Useful Materials (used in previous classes I’ve taught)

A function f : X  Y contains 3 pieces of information:

 Domain: X

 Codomain: Y

 A rule sending elements from domain to codomain: f

Example: fx  x2. New notation: f :RR where x  x2 (x maps to x2).

Example: f :R3 R2 where

x

y

z


sinx

y  z
.

Linear Transformation, a special type of function

Linear Transformation: T :Rm Rn is a function which takes in values from Rm (vectors) and outputs values

in Rn (vectors) and also satisfies Tau  bv   aTu   bTv , for all a,b R and u , v Rm.

Recall: A linear combination of vectors u , v is a vector of the form au  bv .

Linear transformations are functions which "preserve" linear combinations.

Example: Is T :R2 R3 where
x

y


x

y  x

y

a linear transformation? ...

T a
x1

y1
 b

x2

y2

 T
ax1  bx2

ay1  by2





ax1  bx2

ay1  by2  ax1  bx2

ay1  by2

 a

x1

y1  x1

y1

 b

x2

y2  x2

y2

 aT
x1

y1
 bT

x2

y2
.

Example: Is fx  3x a linear transformation? ...

fax  by  3ax  by  3ax  3by  a3x  b3y  afx  bfy.

Example: Is T :R2 R2 where
x

y


x2

0
a linear transformation? ...

Observe: T
1

0


1

0
 T

0

0


0

0

However: T
1

0
 T

1

0


2

0
!?!

Linear Transformations Theorem: T :Rm Rn is linear if (and only if):

 Tv  w  Tv   Tw, for all v ,w Rm, and

 Tkv   kTv , for all v Rm and all scalars k.

Example: Let x 

x1



xm

Rm and ARnm.

Observe: x  x1 e 1 xm e m.

So, Ax A x1 e 1 xm e m A x1 e 1 A xm e m  x1A e 1 xmA e m . (Chap. 1)

All information about linear transformations is encoded in where the transformation sends the basis vectors e i.



In R2, using standard basis:

Ae 1 
3 1

0 2

1

0


3

0
and Ae 2 

3 1

0 2

0

1


1

2
.

So, a linear transformation sends the 1st basis vector to the 1st column vector, and the 2nd basis vector to the 2nd column.

Matrix Columns of a Linear Transformation Theorem: Given linear transformation T :Rm Rn.

Matrix of T is: A

| | |

T e 1 T e 2  T e m

| | |

.

Linear Transformation Matrix Correspondence: T :Rm Rn is a linear transformation  Tx   Ax , for some Anm.

Proof for T :R2 R2: First we show.

Suppose T
1

0


a

c
and T

0

1


b

d
.

Note if A
a b

c d
, then A

1

0


a

c
and A

0

1


b

d
.

Now we show.

Recall Ax A
x

y
is a linear transformation (as seen earlier),

and its effect on
1

0
,

0

1
is the same as T.

So Ax is a linear transformation. 



LT, Zero Identity Thm: If T :Rm Rn, then T 0  0.

Proof: Let 0 Rm and T be a linear transformation.

Then, T 0  . . .

 T 0  0

 0  T 0  0 Rn.

Alternatively: T 0

 Tx  x 

 Tx   Tx   0 Rn.

Corollary: The Contrapositive.

Invertibility

Invertible Transformation: T :Rm Rn where there exists a map S :Rn Rm such that TSx   x and STy   y .

We usually denote the "inverse" S as T1.

Example: Show that T :RR where x  3x and S :RR where x  1
3 x are inverses. ...

TSx

 T 1
3 x

 3  1
3 x  x and ...

STx  S3x



 1
3 3x  x. 

Example: Does T :R2 R2 where
x

y


0

x
have an inverse? ...

Observe that:
1

1


0

1
, and

1

2


0

1
.

If S exists, then S
0

1


1

1
, and S

0

1


1

2
. Whoops.

Practice

Which are linear transformations? Briefly justify.

a)
x

y


2x  3y

x  y

y

b)
x

y


2x  3y

x  y

y  1

c)

x

y

z



3xy

5yz

7xz

. . . .

For each which is a linear transform, find the matrix representing it.

For a) :
1

0


2

1

0

,
0

1


3

1

1

, so A

| |

Te 1 Te 2

| |



2 3

1 1

0 1

.


