Applied Linear Algebra

Linearity

Up until now, we've exploited linearity mostly in \mathbb{R}^{n}, but now we'll generalize, showing its influence in other vector spaces. Indeed, this concept contributes to differential equations, integral equations, stochastic systems, and even quantum mechanics.

7.1 Linear Functions

Definition: Let V and W be real vector spaces. A function $L: V \rightarrow W$ is called linear if it obeys two basic rules:
$L[\vec{v}+\vec{w}]=L[\vec{v}]+L[\vec{w}], \quad L[c \vec{v}]=c L[\vec{v}]$, for all $\vec{v}, \vec{w} \in V$ and all scalar c.
We will call V the domain and W the codomain for L.

Or more succinctly, a linear function respects linear combinations:

$$
L[c \vec{v}+d \vec{w}]=c L[\vec{v}]+d L[\vec{w}], \text { for all } \vec{v}, \vec{w} \in V, \quad c, d \in \mathbb{R}
$$

Algebraic Linear Functions

Zero function: $O[\vec{v}]=\overrightarrow{0}$.
Identity Function: $I[\vec{v}]=\vec{v}$.
Scalar Multiplication: $M_{a}[\vec{v}]=a \vec{v}$ for $a \in \mathbb{R}$.

NOT Linear Functions: Even though $y=L[x]=a x+b$ is a straight line, it is not a linear fn when $b \neq 0$.

Indeed, $L\left[x_{1}+x_{2}\right]=a\left(x_{1}+x_{2}\right)+b$

$$
\neq\left(a x_{1}+b\right)+\left(a x_{2}+b\right)=L\left[x_{1}\right]+L\left[x_{2}\right] .
$$

Also: $L[0]=b \neq 0$.

Instead, these are called affine functions.

Matrices: Matrices are easily seen as linear functions.
Observe that $\mathbf{A}[c \vec{v}+d \vec{w}]=c \mathbf{A} \vec{v}+d \mathbf{A} \vec{w}$.

In fact:
Thm: Every linear function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ (between finite dim spaces) is given by matrix multiplication: $L[\vec{v}]=\mathbf{A}^{m \times n} \vec{v}$. (!?!)

Proof: Key idea: what does linear function do to basis vectors? Let $\widehat{e}_{1}, \ldots, \widehat{e}_{n}$ be standard basis of \mathbb{R}^{n}, and let
$\widehat{e}_{1}^{\prime}, \ldots, \widehat{e}_{m}^{\prime}$ be standard basis of \mathbb{R}^{m}. Since $L\left[\widehat{e}_{j}\right] \in \mathbb{R}^{m}$, we can write it as a linear combination of the latter basis vectors:
$L\left[\widehat{e}_{j}\right]=\vec{a}_{j}=\left[\begin{array}{c}a_{1 j} \\ \vdots \\ a_{m j}\end{array}\right]=a_{1 j} \widehat{e}_{1}^{\prime}+\ldots+a_{m j} \widehat{e}_{m}^{\prime}, \quad j=1, \ldots, n$.

Let's construct: $\mathbf{A}^{m \times n}=\left(\begin{array}{lll}\vec{a}_{1} & \ldots & \vec{a}_{n}\end{array}\right)=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$, Whose columns are the image vectors $(* *)$.

Using $(*)$, we then compute the effect of L on a general vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)^{T} \in \mathbb{R}^{n}$:

$$
L[\vec{v}]=L\left[v_{1} \widehat{e}_{1}+\ldots+v_{n} \widehat{e}_{n}\right]=v_{1} L\left[\widehat{e}_{1}\right]+\ldots+v_{n} L\left[\widehat{e}_{n}\right]=v_{1} \vec{a}_{1}+\ldots+v_{n} \vec{a}_{n}=\mathbf{A} \vec{v}
$$

The final inequality follows from our basic formula: $\mathbf{A} \vec{c}=c_{1} \vec{a}_{1}+\ldots+c_{k} \vec{a}_{k}$.
We conclude that the vector $L[\vec{v}]$ coincides with the vector $\mathbf{A} \vec{v}$.

This proof shows how to construct the matrix representative of a linear function L. That is: $\mathbf{A}=\left[L\left[\widehat{e}_{1}\right] \ldots L\left[\widehat{e}_{n}\right]\right]$.

Example: Rotations! Let's find matrix representative of rotating 2D space by θ.

According to the proof above, we want:

$$
L[\vec{v}]=\mathbf{A} \vec{v}=\left[\begin{array}{ll}
L\left[\widehat{e}_{1}\right] & L\left[\hat{e}_{2}\right]
\end{array}\right] \vec{v} .
$$

And note that rotating \widehat{e}_{1} by θ gives $(\cos \theta) \widehat{e}_{1}+(\sin \theta) \widehat{e}_{2}=(\cos \theta, \sin \theta)$.

rotating \widehat{e}_{2} by θ gives $-(\sin \theta) \widehat{e}_{1}+(\cos \theta) \widehat{e}_{2}=(-\sin \theta, \cos \theta)$.

Therefore: $\mathbf{A} \vec{v}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \vec{v}$.

Example: Explain why $\vec{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ where $\vec{F}(\vec{x})=\left[\begin{array}{l}x+e^{y} \\ 2 x+y\end{array}\right]$ is not linear.

$$
\vec{F}(\overrightarrow{0})=\left[\begin{array}{c}
0+e^{0} \\
2(0)+0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { and } \vec{F}(c \vec{x})=\left[\begin{array}{c}
c x+e^{c y} \\
2 c x+c y
\end{array}\right] \neq\left[\begin{array}{c}
c x+c e^{y} \\
2 c x+c y
\end{array}\right]=c \vec{F}(\vec{x}) .
$$

Example: Explain why the translation function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined by

$$
\begin{gathered}
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+a \\
y+b
\end{array}\right] \text { for } a, b \in \mathbb{R} \text {, is almost never linear. Precisely when is it linear? } \\
T\left(c_{1}\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+c_{2}\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
c_{1} x_{1}+c_{2} x_{2} \\
c_{1} y_{1}+c_{2} y_{2}
\end{array}\right]\right)=\left[\begin{array}{l}
c_{1} x_{1}+c_{2} x_{2}+a \\
c_{1} y_{1}+c_{2} y_{2}+b
\end{array}\right] \neq\left[\begin{array}{l}
c_{1} x_{1}+c_{2} x_{2}+2 a \\
c_{1} y_{1}+c_{2} y_{2}+2 b
\end{array}\right] \\
=\left[\begin{array}{l}
c_{1} x_{1}+a \\
c_{1} y_{1}+b
\end{array}\right]+\left[\begin{array}{l}
c_{2} x_{2}+a \\
c_{2} y_{2}+b
\end{array}\right]=c_{1} T\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+c_{2} T\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] \quad(\text { unless } a=b=0)
\end{gathered}
$$

Linear Operators

Functions spaces: Much wider variety of linear operators available (not just matrices). Complete classification is out of the question. But let's look at some common examples:

Example: Evaluation of a Function: For $f \in C^{0}[a, b]$ operate as $L[f]=f\left(x_{0}\right)$ with $L: C^{0}[a, b] \rightarrow \mathbb{R}$.
$L[c f+d g]=(c f+d g)\left(x_{0}\right)=c f\left(x_{0}\right)+d g\left(x_{0}\right)=c L[f]+d L[g]$.

Example: Integration operator on $f \in C^{0}[a, b]$ as $\mathfrak{J}[f]=\int_{a}^{b} f(x) d x$ with $\mathfrak{J}: C^{0}[a, b] \rightarrow \mathbb{R}$.

$$
\mathfrak{J}[c f+d g]=\int_{a}^{b}(c f(x)+d g(x)) d x=c \int_{a}^{b} f(x) d x+d \int_{a}^{b} g(x) d x=c \mathfrak{J}[f]+d \mathfrak{S}[g] .
$$

Example: Indefinite Integral operator on $f \in C^{0}[a, b]$ as $J[f]=\int_{a}^{x} f(x) d x$ with $J: C^{0}[a, b] \rightarrow C^{0}[a, b]$.

$$
J[c f+d g]=\int_{a}^{x}(c f(x)+d g(x)) d x=c \int_{a}^{x} f(x) d x+d \int_{a}^{x} g(x) d x=c J[f]+d J[g] .
$$

Example: Differentiation operator on $f \in C^{1}[a, b]$ as $D[f]=f^{\prime}$ with $D: C^{1}[a, b] \rightarrow C^{0}[a, b]$.

$$
D[c f+d g]=(c f(x)+d g(x))^{\prime}=c f^{\prime}(x)+d g^{\prime}(x)=c D[f]+d D[g] .
$$

The Space of Linear Functions

Let's take linearity up a notch! Given two vector spaces V, W, let's use $\mathcal{L}(V, W)$ to denote set of all linear functions $L: V \rightarrow W$.

Addition Notation/Definition: $(L+M)[\vec{v}]:=L[\vec{v}]+M[\vec{v}]$.

So is $L+M$ linear? $\quad(L+M)[a \vec{v}+b \vec{w}]=L[a \vec{v}+b \vec{w}]+M[a \vec{v}+b \vec{w}] \quad$ (definition above)

$$
\begin{aligned}
& =a L[\vec{v}]+b L[\vec{w}]+a M[\vec{v}]+b M[\vec{w}] \quad \text { (linearity of } L, M \text {) } \\
& =(a L[\vec{v}]+a M[\vec{v}])+(b L[\vec{w}]+b M[\vec{w}]) \\
& =a(L+M)[\vec{v}]+b(L+M)[\vec{w}] . \quad \text { (definition above) So, yes. } L+M \text { is linear. }
\end{aligned}
$$

Scalar Mult. Notation/Definition: $(c L)[\vec{v}]:=c L[\vec{v}]$. Linearity shown similarly to above.

Zero Function: $O[\vec{v}]: \equiv \overrightarrow{0}$. Vector field axioms are satisfied with these definitions (check them!).

Concretely: Space of linear transformations in the plane: $\mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ is identified with space $\mathcal{M}_{2 \times 2}$ of $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.

Standard basis: $\mathbf{E}_{11}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \quad \mathbf{E}_{12}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \quad \mathbf{E}_{21}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], \quad \mathbf{E}_{22}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.

Every matrix uniquely written as: $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a \mathbf{E}_{11}+b \mathbf{E}_{12}+c \mathbf{E}_{21}+d \mathbf{E}_{22}$.

Dual Spaces

Definition: The dual space to a vector space V is the vector space $V^{*}=\mathcal{L}(V, \mathbb{R})$ consisting of all real valued linear functions $\ell: V \rightarrow \mathbb{R}$.

If $V=\mathbb{R}^{n}$, then, by previous them, every linear function $\ell: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by multiplication by $1 \times n$ matrix, i.e., a row vector. $\ell[\vec{v}]=\vec{a}^{T} \vec{v}=a_{1} v_{1}+\ldots+a_{n} v_{n}$.

Therefore, we can identify the dual space $\left(\mathbb{R}^{n}\right)^{*}$ with the space of row vectors with n entries.

Row vectors should more properly be viewed as real valued linear functions, the dual objects to column vectors.

Theorem: Let V be a finite dimensional real inner product space. Then every linear function $\ell: V \rightarrow \mathbb{R}$ is given by taking the inner product with a fixed vector $\vec{a} \in V: \quad \ell[\vec{v}]=\langle\vec{a}, \vec{v}\rangle$.

Proof: Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be a basis of V. If we write $\vec{v}=y_{1} \vec{v}_{1}+\ldots+y_{n} \vec{v}_{n}$, then, by linearity,
$\ell[\vec{v}]=y_{1} \ell\left[\vec{v}_{1}\right]+\ldots+y_{n} \ell\left[\vec{v}_{n}\right]=b_{1} y_{1}+\ldots+b_{n} y_{n}$, where $b_{i}=\ell\left[\vec{u}_{i}\right]$.

On the other hand, if we write $\vec{a}=x_{1} \vec{v}_{1}+\ldots+x_{n} \vec{v}_{n}$, then

$$
\langle\vec{a}, \vec{v}\rangle=\sum_{i, j=1}^{n} x_{j} y_{i}\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=\sum_{i, j=1}^{n} g_{i j} x_{j} y_{i}, \quad \quad(* *)
$$

where $G=\left(g_{i j}\right)$ is the $n \times n$ Gram matrix with entries $g_{i j}=\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle$.

Equality of $(*)$ and $(* *)$ requires that $G \vec{x}=\vec{b}$, where $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}, \vec{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$.

Invertibility of G is guaranteed by Theorem 3.34 allows us to solve for $\vec{x}=G^{-1} \vec{b}$ and thereby construct the desired \vec{a}.

In particular, if $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is an orthonormal basis, then $G=1$ and hence $\vec{a}=b_{1} \vec{v}_{1}+\ldots+b_{n} \vec{v}_{n}$.

Example: Write down a basis for, and dimension of, the linear function space $\mathcal{L}\left(P^{(3)}, \mathbb{R}\right)$.

This is 4 D . In particular, if you view the polynomials as vectors in \mathbb{R}^{4}, the polynomial $a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$ can be written $\left(a_{3}, a_{2}, a_{1}, a_{0}\right)$, with basis $L_{0}=(0,0,0,1)^{T}, L_{1}=(0,0,1,0)^{T}$, etc.

Example: Given a basis $\vec{v}_{1}, \ldots, \vec{v}_{n}$ of V, let the dual basis $\ell_{1}, \ldots, \ell_{n}$ of V^{*} consists of the linear functions uniquely defined by the requirements $\ell_{i}\left(\vec{v}_{j}\right)=\left\{\begin{array}{ll}1 \text { if } & i=j, \\ 0 \text { if } & i \neq j .\end{array}\right.$ Find the dual basis for: $\vec{v}_{1}=(1,1,0), \vec{v}_{2}=(1,0,1)$, and $\vec{v}_{3}=(0,1,1)$.

Note we were given column vectors. However, we are looking for elements ℓ_{i} of $\left(\mathbb{R}^{3}\right)^{*}$ (row vectors) such that

$$
\ell_{i}\left(\vec{v}_{j}\right)= \begin{cases}1 \text { if } & i=j, \\ 0 \text { if } & i \neq j\end{cases}
$$

Let's require $\ell_{1}\left(\vec{v}_{1}\right)=\ell_{1}((1,1,0))=\left(\ell_{11}, \ell_{12}, \ell_{13}\right)^{T}(1,1,0)=1$.
And similarly that $\left(\ell_{11}, \ell_{12}, \ell_{13}\right)^{T}(1,0,1)=\left(\ell_{11}, \ell_{12}, \ell_{13}\right)^{T}(0,1,1)=0$.

From this we get: $\ell_{11}+\ell_{12}=1, \quad \ell_{11}+\ell_{13}=0, \quad \ell_{12}+\ell_{13}=0$.
\Rightarrow From the 2nd two eqs: $\quad \ell_{11}=-\ell_{13}, \quad \ell_{12}=-\ell_{13}$, so $\ell_{11}=\ell_{12}=-\ell_{13}$.
\Rightarrow From the 1st eq: $\quad \ell_{11}+\ell_{12}=2 \ell_{11}=1$ or $\ell_{11}=\frac{1}{2}$. Therefore: $\left(\ell_{11}, \ell_{12}, \ell_{13}\right)=\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right)$.

Let's require $\ell_{2}\left(\vec{v}_{2}\right)=\ell_{2}((1,0,1))=\left(\ell_{21}, \ell_{22}, \ell_{23}\right)^{T}(1,0,1)=1$.
And similarly that $\left(\ell_{21}, \ell_{22}, \ell_{23}\right)^{T}(1,1,0)=\left(\ell_{21}, \ell_{22}, \ell_{23}\right)^{T}(0,1,1)=0$.

From this we get: $\ell_{21}+\ell_{23}=1, \quad \ell_{21}+\ell_{22}=0, \quad \ell_{22}+\ell_{23}=0$.

$$
\Rightarrow \quad \ell_{21}=\ell_{23}=-\ell_{22} \text { and } \ell_{21}=\frac{1}{2} \text {. Therefore: }\left(\ell_{21}, \ell_{22}, \ell_{23}\right)=\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right) .
$$

Similarly, we find $\left(\ell_{31}, \ell_{32}, \ell_{33}\right)=\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

Therefore, the dual basis is $\left\{\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right\}$.

Composition

So far, we've added linear functions, and multiplied them by scalars.
What about composing them?

Lemma: Let V, W, Z be vector spaces. If $L: V \rightarrow W$ and $M: W \rightarrow Z$ are linear functions, then the composite function $M \circ L: V \rightarrow Z$, defined by $(M \circ L)[\vec{v}]:=M[L[\vec{v}]]$
 is also linear.

Proof: $(M \circ L)[c \vec{v}+d \vec{w}]=M[L[c \vec{v}+d \vec{w}]] \quad$ (definition)

$$
\left.\begin{array}{rr}
& =M[c L[\vec{v}]+d L[\vec{w}]] \\
= & \text { (linearity of } L \text {) } \\
& c M[L[\vec{v}]]+d M[L[\vec{w}]]
\end{array} \quad \text { (linearity of } M \text {) }\right) \text { (definition) }
$$

Concretely: The commutator of two linear transformations $L, M: V \rightarrow V$ on a vector space V is: $K:=[L, M]:=L \circ M-M \circ L$, where $[L, M]$ is referred to as a Lie bracket.

Prove that the commutator K is a linear transformation on V.
$K[a \vec{v}+b \vec{w}]=[L, M][a \vec{v}+b \vec{w}]=(L \circ M-M \circ L)[a \vec{v}+b \vec{w}] \quad($ definition of $K)$

$$
\begin{array}{ll}
=L[M[a \vec{v}+b \vec{w}]]-M[L[a \vec{v}+b \vec{w}]] & \text { (definition of composition) } \\
=L[a M[\vec{v}]+b M[\vec{w}]]-M[a L[\vec{v}]-b L[\vec{w}]] & \text { (linearity of } L, M) \\
=a L[M[\vec{v}]]+b L[M[\vec{w}]]-a M[L[\vec{v}]]-b M[L[\vec{w}]] & \text { (linearity of } L, M) \\
=(a L[M[\vec{v}]]-a M[L[\vec{v}]])+(b L[M[\vec{w}]]-b M[L[\vec{w}]]) & \text { (algebra) } \\
=a(L \circ M[\vec{v}]-M \circ L[\vec{v}])+b(L \circ M[\vec{w}]-M \circ L[\vec{w}]) & \text { (definition of composition) } \\
=a(L \circ M-M \circ L)[\vec{v}]+b(L \circ M-M \circ L)[\vec{w}]=a[L, M][\vec{v}]+b[L, M][\vec{w}] \quad \text { (definition of } K) \\
=a K[\vec{v}]+b K[\vec{w}] .
\end{array}
$$

The Jacoby Identity: $[[L, M], N]+[[N, L], M]+[[M, N], L]=O$.
Applications: Cross product $\vec{a} \times \vec{b}$ and Lie bracket operation $[L, M]$ satisfy the Jacobi identity. In analytical mechanics, the Jacobi identity is satisfied by the Poisson brackets $\{f, g\}$. In quantum mechanics, it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket $\{\{f, g\}\}$.

Prove that the Jacoby Identity: $[[L, M], N]+[[N, L], M]+[[M, N], L]=O$ is valid for any three transformations.

$$
\begin{aligned}
& {[[L, M], N]=[L, M] \circ N-N \circ[L, M]=(L \circ M-M \circ L) \circ N-N \circ(L \circ M-M \circ L)} \\
& \quad=(L \circ M \circ N-M \circ L \circ N)-(N \circ L \circ M-N \circ M \circ L)=L \circ M \circ N-M \circ L \circ N-N \circ L \circ M+N \circ M \circ L
\end{aligned}
$$

Similarly: $[[N, L], M]=N \circ L \circ M-L \circ N \circ M-M \circ N \circ L+M \circ L \circ N$, and $[[M, N], L]=M \circ N \circ L-N \circ M \circ L-L \circ M \circ N+L \circ N \circ M$.

Therefore: $[[L, M], N]+[[N, L], M]+[[M, N], L]$
$=(L \circ M \circ N-M \circ L \circ N-N \circ L \circ M+N \circ M \circ L)+(N \circ L \circ M-L \circ N \circ M-M \circ N \circ L+M \circ L \circ N)$

$$
+(M \circ N \circ L-N \circ M \circ L-L \circ M \circ N+L \circ N \circ M)
$$

$=(L \circ M \circ N-L \circ M \circ N+L \circ N \circ M-L \circ N \circ M)+(N \circ L \circ M-N \circ L \circ M+N \circ M \circ L-N \circ M \circ L)$

$$
+(M \circ N \circ L-M \circ N \circ L+M \circ L \circ N-M \circ L \circ N)
$$

$=O$.

Do linear functions have inverses? We've seen that square matrices do.
More generally, we have the following:

Definition: Let $L: V \rightarrow W$ be a linear function. If $M: W \rightarrow V$ is a function such that:
$L \circ M=I_{W}$,
$M \circ L=I_{V}$,
$(* * *)$
are equal to the identity function (in their respective spaces), then we call M the inverse of L and write $M=L^{-1}$.

In other words, being an inverse requires: $L[M[\vec{w}]]=\vec{w}$ for all $\vec{w} \in W$, and $M[L[\vec{v}]]=\vec{v}$ for all $\vec{v} \in V$.

When it exists, the inverse is unique (proof part of book exercise)!
Informally: Observe that since we relabeled the right- and left-inverse (M) of L as L^{-1} in $(* * *)$, then $\left(L^{-1}\right)^{-1}=L$.

Lemma: If it exists, the inverse of a linear function is also a linear function.

Proof: Let L, M satisfy the conditions of the previous definition.

Given $\vec{w}, \vec{w}^{\prime} \in W$. We wish to show that M is linear, or (given scalars c, d) that $M\left[c \vec{w}+d \vec{w}^{\prime}\right]=c M[\vec{w}]+d M\left[\vec{w}^{\prime}\right]$.

Since M and L are inverses, we note $\vec{w}=(L \circ M)[\vec{w}]=L[M[\vec{w}]]$,
and $\vec{w}^{\prime}=(L \circ M)\left[\vec{w}^{\prime}\right]=L\left[M\left[\vec{w}^{\prime}\right]\right]$.

Therefore, using only linearity of L :

$$
\begin{array}{rlr}
M\left[c \vec{w}+d \vec{w}^{\prime}\right] & =M\left[c L[M[\vec{w}]]+d L\left[M\left[\vec{w}^{\prime}\right]\right]\right] & \text { (from above) } \\
& =M\left[L\left[c M[\vec{w}]+d M\left[\vec{w}^{\prime}\right]\right]\right] \quad \quad \text { (linearity of } L \text {) } \\
& =(M \circ L)\left[c M[\vec{w}]+d M\left[\vec{w}^{\prime}\right]\right] \\
& =c M[\vec{w}]+d M\left[\vec{w}^{\prime}\right], \quad(M \text { and } L \text { are inverses) }
\end{array}
$$

proving linearity of M.

On finite dimensional domains, since linear transformations can be written as matrices, this results in a very simple situation.

That is, recall that if $V=\mathbb{R}^{n}, W=\mathbb{R}^{m}$, such that L, M are given by matrix multiplication by \mathbf{A} and \mathbf{B} respectively, then the inverse definition's conditions $(* * *)$ reduce to the usual conditions: $\mathbf{A B}=\mathbf{I}=\mathbf{B A}$.

In particular, \mathbf{I} is an $n \times n$ matrix, requiring $m=n$, and for its coefficient matrix \mathbf{A} to be nonsingular.

However, on infinite dimensional function spaces, things are more subtle.

Concretely: Let $D[f]=f^{\prime}$ represent differentiation on $C^{1}[a, b]$, and $J[f]=g$ represent integration, where $g(x)=\int_{a}^{x} f(y) d y$ on $C^{0}[a, b]$.

We often consider these "inverse" operations.

Indeed, observe that $(D \circ J)[f]=D[J[f]]=D[g]=g^{\prime}=f$, since

$$
g^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} f(y) d y=f(x) . \quad \text { (Fund. Thm. Calc) }
$$

However, what about $(J \circ D)[f]$? This is $J[D[f]]=J\left[f^{\prime}\right]=h$, where

$$
h(x)=\int_{a}^{x} f^{\prime}(y) d y=f(x)-f(a) .
$$

So $h(x) \neq f(x)$, unless $f(a)=0$. So, $J \circ D \neq I_{C^{1}[a, b]}$.

In other words, D is a left-inverse for J, but not a right-inverse!

If we restrict D to $V:=\{f: f(a)=0\} \subset C^{1}[a, b]$, then an inverse is defined (as seen above).

But notice that $V \subsetneq C^{1}[a, b] \subsetneq C^{0}[a, b]$.

So J defines a one-to-one invertible, linear map from a vector space $C^{0}[a, b]$ to a proper subspace $V \subsetneq C^{0}[a, b]$!

This can't happen in finite dimensions. A matrix (linear map) is invertible only when the size of it's image is the same as it's domain and codomain.

Concretely: Determine if linear function $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by reflection through the x-axis has an inverse. If so, describe it.

How does this transformation $L\langle x, y\rangle \rightarrow\langle x,-y\rangle$ affect the basis vectors?

$$
L\langle 1,0\rangle \rightarrow\langle 1,0\rangle, \quad L\langle 0,1\rangle \rightarrow\langle 0,-1\rangle .
$$

Therefore: $L\langle x, y\rangle=\mathbf{A} \vec{x}=\left[\begin{array}{ll}L\left(\widehat{e}_{1}\right) & L\left(\widehat{e}_{2}\right)\end{array}\right] \vec{x}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \vec{x}$.

And observe that $\mathbf{A}^{-1}=\frac{1}{|\mathbf{A}|}\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]=\mathbf{A}$.

So, yes L has an inverse. And it is its own inverse (Which intuitively/geometrically makes sense)!

