
Applied Linear Algebra

Instructor: Jodin Morey moreyjc@umn.edu

Linearity
Up until now, we’ve exploited linearity mostly in Rn, but now we’ll generalize, showing its influence in other vector spaces.

Indeed, this concept contributes to differential equations, integral equations, stochastic systems, and even quantum mechanics.

7.1 Linear Functions
Definition: Let V and W be real vector spaces. A function L : V  W is called linear if it obeys two basic rules:

Lv  w  Lv   Lw, Lcv   cLv , for all v ,w  V and all scalar c.

We will call V the domain and W the codomain for L.

Or more succinctly, a linear function respects linear combinations:

Lcv  dw  cLv   dLw, for all v ,w  V, c,d  R. 

Algebraic Linear Functions

Zero function: Ov   0.

Identity Function: Iv   v .

Scalar Multiplication: Mav   av for a  R.

NOT Linear Functions: Even though y  Lx  ax  b is a straight line, it is not a linear fn when b  0.

Indeed, Lx1  x2   ax1  x2  b

 ax1  b  ax2  b  Lx1   Lx2 .

Also: L0  b  0.

Instead, these are called affine functions.

Matrices: Matrices are easily seen as linear functions.

Observe that Acv  dw  cAv  dAw.

In fact:

Thm: Every linear function L : Rn  Rm (between finite dim spaces) is given by matrix multiplication: Lv   Amn v . (!?!)



Proof: Key idea: what does linear function do to basis vectors? Let e 1, ,e n be standard basis of Rn, and let
e 1
 , ,em

 be standard basis of Rm. Since Le j   Rm, we can write it as a linear combination of the latter basis vectors:

Le j   a j 

a1j



amj

 a1j
e 1
 amj

em
 , j  1, ,n.  

Let’s construct: Amn  a 1  a n 

a11 a12  a1n

a21 a22  a2n

   

am1 am2  amn

, Whose columns are the image vectors  .

Using , we then compute the effect of L on a general vector v  v1, ,vnT  Rn:

Lv   Lv1
e 1 vn

e n   v1L
e 1  vnL

e n   v1a 1 vna n  Av .

The final inequality follows from our basic formula: Ac  c1a 1 cka k.

We conclude that the vector Lv  coincides with the vector Av . 

This proof shows how to construct the matrix representative of a linear function L. That is: A  Le 1   Le n  .

Example: Rotations! Let’s find matrix representative of rotating 2D space by .

According to the proof above, we want:

Lv   Av  Le 1  Le 2  v .

And note that rotating e 1 by  gives cos
e 1  sine 2  cos, sin.

rotating e 2 by  gives sin
e 1  cose 2   sin, cos.

Therefore: Av 
cos  sin

sin cos
v .

Example: Explain why F : R2  R2 where Fx  
x  ey

2x  y
is not linear. .

F 0 
0  e0

20  0


1

0


0

0
and Fcx  

cx  ecy

2cx  cy


cx  cey

2cx  cy
 cFx .



Example: Explain why the translation function T : R2  R2, defined by

T
x

y


x  a

y  b
for a,b  R, is almost never linear. Precisely when is it linear?

T c1
x1

y1
 c2

x2

y2
 T

c1x1  c2x2

c1y1  c2y2


c1x1  c2x2  a

c1y1  c2y2  b


c1x1  c2x2  2a

c1y1  c2y2  2b


c1x1  a

c1y1  b


c2x2  a

c2y2  b
 c1T

x1

y1
 c2T

x2

y2
(unless a  b  0).

Linear Operators

Functions spaces: Much wider variety of linear operators available (not just matrices). Complete classification is

out of the question. But let’s look at some common examples:

Example: Evaluation of a Function: For f  C0a,b operate as L f   fx0 with L : C0a,b  R.

Lcf  dg  cf  dgx0  cfx0  dgx0  cL f   dLg.

Example: Integration operator on f  C0a,b as If  
a

b
fxdx with I : C0a,b  R.

Icf  dg  
a

b
cfx  dgxdx  c 

a

b
fxdx  d 

a

b
gxdx  cI f   dIg.

Example: Indefinite Integral operator on f  C0a,b as Jf  
a

x
fxdx with J : C0a,b  C0a,b.

Jcf  dg  
a

x
cfx  dgxdx  c 

a

x
fxdx  d 

a

x
gxdx  cJ f   dJg.

Example: Differentiation operator on f  C1a,b as Df  f  with D : C1a,b  C0a,b.

Dcf  dg  cfx  dgx   cf x  dgx  cD f   dDg.

The Space of Linear Functions

Let’s take linearity up a notch! Given two vector spaces V,W, let’s use LV,W to denote set of all linear functions L : V  W.



It turns out LV,W (in addition to operating on vector spaces) is itself, a vector space!

Addition Notation/Definition: L  Mv  : Lv   Mv .

So is L  M linear? L  Mav  bw  Lav  bw  Mav  bw (definition above)

 aLv   bLw  aMv   bMw (linearity of L,M)

 aLv   aMv   bLw  bMw

 aL  Mv   bL  Mw. (definition above) So, yes. L  M is linear.

Scalar Mult. Notation/Definition: cLv  : cLv . Linearity shown similarly to above.

Zero Function: Ov  : 0. Vector field axioms are satisfied with these definitions (check them!).

Concretely: Space of linear transformations in the plane: LR2,R2 is identified with spaceM22 of A 
a b

c d
.

Standard basis: E11 
1 0

0 0
, E12 

0 1

0 0
, E21 

0 0

1 0
, E22 

0 0

0 1
.

Every matrix uniquely written as: A 
a b

c d
 aE11  bE12  cE21  dE22.

Dual Spaces

Definition: The dual space to a vector space V is the vector space V  LV,R consisting of all

real valued linear functions  : V  R.

If V  Rn, then, by previous them, every linear function  : Rn  R is given by multiplication by 1  n matrix, i.e., a row vector.

v   a
T
v  a1v1 anvn.

Therefore, we can identify the dual space Rn with the space of row vectors with n entries.



Row vectors should more properly be viewed as real valued linear functions, the dual objects to column vectors.

Theorem: Let V be a finite dimensional real inner product space. Then every linear function  : V  R is given by

taking the inner product with a fixed vector a  V : v   a , v .

Proof: Let v 1, , v n be a basis of V. If we write v  y1 v 1 yn v n, then, by linearity,

v   y1v 1  ynv n   b1y1 bnyn, where bi  u i . 

On the other hand, if we write a  x1 v 1 xn v n, then

a , v   i,j1
n x jy iv i, v j    i,j1

n gijx jy i,  

where G  gij is the n  n Gram matrix with entries gij  v i, v j .

Equality of  and   requires that Gx  b , where x  x1, ,xnT, b  b1, ,bnT.

Invertibility of G is guaranteed by Theorem 3.34 allows us to solve for x  G1b and

thereby construct the desired a .

In particular, if v 1, , v n is an orthonormal basis, then G  1 and hence a  b1 v 1 bn v n. 

Example: Write down a basis for, and dimension of, the linear function space LP3,R.

This is 4D. In particular, if you view the polynomials as vectors in R4, the polynomial a3x3  a2x2  a1x  a0

can be written a3,a2,a1,a0, with basis L0  0,0,0, 1T, L1  0,0,1, 0T, etc.

Example: Given a basis v 1, , v n of V, let the dual basis 1, , n of V consists of the linear functions uniquely defined by

the requirements iv j 
1 if i  j,

0 if i  j.
Find the dual basis for: v 1  1,1,0, v 2  1,0,1, and v 3  0,1,1.

Note we were given column vectors. However, we are looking for elements i of R3
 (row vectors) such that

iv j 
1 if i  j,

0 if i  j.

Let’s require 1v 1  11,1,0  11, 12, 13T1,1,0  1.

And similarly that 11, 12, 13T1,0,1  11, 12, 13T0,1,1  0.

From this we get: 11  12  1, 11  13  0, 12  13  0.



 From the 2nd two eqs: 11  13, 12  13, so 11  12  13.

 From the 1st eq: 11  12  211  1 or 11  1
2 . Therefore: 11, 12, 13 

1
2 ,

1
2 ,

1
2 .

Let’s require 2v 2  21,0,1  21, 22, 23T1,0,1  1.

And similarly that 21, 22, 23T1,1,0  21, 22, 23T0,1,1  0.

From this we get: 21  23  1, 21  22  0, 22  23  0.

 21  23  22 and 21  1
2 . Therefore: 21, 22, 23 

1
2 ,

1
2 ,

1
2 .

Similarly, we find 31, 32, 33   1
2 ,

1
2 ,

1
2 .

Therefore, the dual basis is 1
2 ,

1
2 ,

1
2 , 1

2 ,
1
2 ,

1
2 ,  1

2 ,
1
2 ,

1
2 .

Composition

So far, we’ve added linear functions, and multiplied them by scalars.

What about composing them?

Lemma: Let V,W,Z be vector spaces. If L : V  W and M : W  Z are linear functions,

then the composite function M  L : V  Z, defined by M  Lv  : MLv 

is also linear.

Proof: M  Lcv  dw  MLcv  dw (definition)

 McLv   dLw (linearity of L)

 cMLv   dMLw (linearity ofM)

 cM  Lv   dM  Lw (definition) 

Concretely: The commutator of two linear transformations L,M : V  V on a vector space V is:

K : L,M : L  M  M  L, where L,M is referred to as a Lie bracket.

Prove that the commutator K is a linear transformation on V.

Kav  bw  L,Mav  bw  L  M  M  Lav  bw (definition of K)



 LMav  bw  MLav  bw (definition of composition)

 LaMv   bMw  MaLv   bLw (linearity of L,M)

 aLMv   bLMw  aMLv   bMLw (linearity of L,M)

 aLMv   aMLv   bLMw  bMLw (algebra)

 aL  Mv   M  Lv   bL  Mw  M  Lw (definition of composition)

 aL  M  M  Lv   bL  M  M  Lw  aL,Mv   bL,Mw (definition of K)

 aKv   bKw. (definition of K)

The Jacoby Identity: L,M,N  N,L,M  M,N,L  O.

Applications: Cross product a  b and Lie bracket operation L,M satisfy the Jacobi identity. In analytical mechanics,

the Jacobi identity is satisfied by the Poisson brackets  f,g. In quantum mechanics, it is satisfied by

operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics

by theMoyal bracket  f,g.

Prove that the Jacoby Identity: L,M,N  N,L,M  M,N,L  O is valid for any three transformations.

L,M,N  L,M  N  N  L,M  L  M  M  L  N  N  L  M  M  L

 L  M  N  M  L  N  N  L  M  N  M  L  L  M  N  M  L  N  N  L  M  N  M  L

Similarly: N,L,M  N  L  M  L  N  M  M  N  L  M  L  N,

and M,N,L  M  N  L  N  M  L  L  M  N  L  N  M.

Therefore: L,M,N  N,L,M  M,N,L

 L  M  N  M  L  N  N  L  M  N  M  L  N  L  M  L  N  M  M  N  L  M  L  N

 M  N  L  N  M  L  L  M  N  L  N  M

 L  M  N  L  M  N  L  N  M  L  N  M  N  L  M  N  L  M  N  M  L  N  M  L

 M  N  L  M  N  L  M  L  N  M  L  N

 O. 



Inverses

Do linear functions have inverses? We’ve seen that square matrices do.

More generally, we have the following:

Definition: Let L : V  W be a linear function. IfM : W  V is a function such that:

L  M  IW, M  L  IV,   

are equal to the identity function (in their respective spaces), then we call M the

inverse of L and write M  L1.

In other words, being an inverse requires: LMw  w for all w  W, and MLv   v for all v  V.

When it exists, the inverse is unique (proof part of book exercise)!

Informally: Observe that since we relabeled the right- and left-inverse (M ) of L as L1 in   , then L11  L.

Lemma: If it exists, the inverse of a linear function is also a linear function.

Proof: Let L,M satisfy the conditions of the previous definition.

Given w,w
  W. We wish to show that M is linear, or (given scalars c,d) that M cw  dw


 cMw  dM w


.

Since M and L are inverses, we note w  L  Mw  LMw,

and w

 L  M w


 L M w


.

Therefore, using only linearity of L :

M cw  dw


 M cLMw  dL M w


(from above)

 M L cMw  dM w


(linearity of L)

 M  L cMw  dM w


(definition of composition)

 cMw  dM w

, (M and L are inverses)

proving linearity ofM. 

On finite dimensional domains, since linear transformations can be written as matrices, this results in a very simple situation.



That is, recall that if V  Rn, W  Rm, such that L,M are given by matrix multiplication by A and B respectively,

then the inverse definition’s conditions    reduce to the usual conditions: AB  I  BA.

In particular, I is an n  n matrix, requiring m  n, and for its coefficient matrix A to be nonsingular.

However, on infinite dimensional function spaces, things are more subtle.

Concretely: Let D f   f  represent differentiation on C1a,b, and

J f   g represent integration, where gx  
a

x
fydy on C0a,b.

We often consider these "inverse" operations.

Indeed, observe that D  J f   DJf  Dg  g  f, since

gx  d
dx

a

x
fydy  fx. (Fund. Thm. Calc)

However, what about J  D f  ? This is JD f   J f   h, where

hx  
a

x
f ydy  fx  fa.

So hx  fx, unless fa  0. So, J  D  IC1a,b.

In other words, D is a left-inverse for J, but not a right-inverse!

If we restrict D to V :  f : fa  0  C1a,b, then an inverse is defined (as seen above).

But notice that V  C1a,b  C0a,b.

So J defines a one-to-one invertible, linear map from a vector space C0a,b to a proper subspace V  C0a,b !

This can’t happen in finite dimensions. A matrix (linear map) is invertible only when the size of it’s image is the

same as it’s domain and codomain.



Concretely: Determine if linear function L : R2  R2 defined by reflection through the x-axis

has an inverse. If so, describe it.

How does this transformation Lx,y  x,y affect the basis vectors? ...

L1,0  1,0, L0,1  0,1.

Therefore: Lx,y  Ax  Le 1 Le 2 x 
1 0

0 1
x .

And observe that A1  1
|A |

1 0

0 1


1 0

0 1
 A.

So, yes L has an inverse. And it is its own inverse (Which intuitively/geometrically makes sense)!


