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Linearity
Up until now, we’ve exploited linearity mostly in Rn, but now we’ll generalize, showing its influence in other vector spaces.

Indeed, this concept contributes to differential equations, integral equations, stochastic systems, and even quantum mechanics.

7.1 Linear Functions
Definition: Let V and W be real vector spaces. A function L : V  W is called linear if it obeys two basic rules:

Lv  w  Lv   Lw, Lcv   cLv , for all v ,w  V and all scalar c.

We will call V the domain and W the codomain for L.

Or more succinctly, a linear function respects linear combinations:

Lcv  dw  cLv   dLw, for all v ,w  V, c,d  R. 

Algebraic Linear Functions

Zero function: Ov   0.

Identity Function: Iv   v .

Scalar Multiplication: Mav   av for a  R.

NOT Linear Functions: Even though y  Lx  ax  b is a straight line, it is not a linear fn when b  0.

Indeed, Lx1  x2   ax1  x2  b

 ax1  b  ax2  b  Lx1   Lx2 .

Also: L0  b  0.

Instead, these are called affine functions.

Matrices: Matrices are easily seen as linear functions.

Observe that Acv  dw  cAv  dAw.

In fact:

Thm: Every linear function L : Rn  Rm (between finite dim spaces) is given by matrix multiplication: Lv   Amn v . (!?!)



Proof: Key idea: what does linear function do to basis vectors? Let e 1, ,e n be standard basis of Rn, and let
e 1
 , ,em

 be standard basis of Rm. Since Le j   Rm, we can write it as a linear combination of the latter basis vectors:

Le j   a j 

a1j



amj

 a1j
e 1
 amj

em
 , j  1, ,n.  

Let’s construct: Amn  a 1  a n 

a11 a12  a1n

a21 a22  a2n

   

am1 am2  amn

, Whose columns are the image vectors  .

Using , we then compute the effect of L on a general vector v  v1, ,vnT  Rn:

Lv   Lv1
e 1 vn

e n   v1L
e 1  vnL

e n   v1a 1 vna n  Av .

The final inequality follows from our basic formula: Ac  c1a 1 cka k.

We conclude that the vector Lv  coincides with the vector Av . 

This proof shows how to construct the matrix representative of a linear function L. That is: A  Le 1   Le n  .

Example: Rotations! Let’s find matrix representative of rotating 2D space by .

According to the proof above, we want:

Lv   Av  Le 1  Le 2  v .

And note that rotating e 1 by  gives cos
e 1  sine 2  cos, sin.

rotating e 2 by  gives sin
e 1  cose 2   sin, cos.

Therefore: Av 
cos  sin

sin cos
v .

Example: Explain why F : R2  R2 where Fx  
x  ey

2x  y
is not linear. .

F 0 
0  e0

20  0


1

0


0

0
and Fcx  

cx  ecy

2cx  cy


cx  cey

2cx  cy
 cFx .



Example: Explain why the translation function T : R2  R2, defined by

T
x

y


x  a

y  b
for a,b  R, is almost never linear. Precisely when is it linear?

T c1
x1

y1
 c2

x2

y2
 T

c1x1  c2x2

c1y1  c2y2


c1x1  c2x2  a

c1y1  c2y2  b


c1x1  c2x2  2a

c1y1  c2y2  2b


c1x1  a

c1y1  b


c2x2  a

c2y2  b
 c1T

x1

y1
 c2T

x2

y2
(unless a  b  0).

Linear Operators

Functions spaces: Much wider variety of linear operators available (not just matrices). Complete classification is

out of the question. But let’s look at some common examples:

Example: Evaluation of a Function: For f  C0a,b operate as L f   fx0 with L : C0a,b  R.

Lcf  dg  cf  dgx0  cfx0  dgx0  cL f   dLg.

Example: Integration operator on f  C0a,b as If  
a

b
fxdx with I : C0a,b  R.

Icf  dg  
a

b
cfx  dgxdx  c 

a

b
fxdx  d 

a

b
gxdx  cI f   dIg.

Example: Indefinite Integral operator on f  C0a,b as Jf  
a

x
fxdx with J : C0a,b  C0a,b.

Jcf  dg  
a

x
cfx  dgxdx  c 

a

x
fxdx  d 

a

x
gxdx  cJ f   dJg.

Example: Differentiation operator on f  C1a,b as Df  f  with D : C1a,b  C0a,b.

Dcf  dg  cfx  dgx   cf x  dgx  cD f   dDg.

The Space of Linear Functions

Let’s take linearity up a notch! Given two vector spaces V,W, let’s use LV,W to denote set of all linear functions L : V  W.



It turns out LV,W (in addition to operating on vector spaces) is itself, a vector space!

Addition Notation/Definition: L  Mv  : Lv   Mv .

So is L  M linear? L  Mav  bw  Lav  bw  Mav  bw (definition above)

 aLv   bLw  aMv   bMw (linearity of L,M)

 aLv   aMv   bLw  bMw

 aL  Mv   bL  Mw. (definition above) So, yes. L  M is linear.

Scalar Mult. Notation/Definition: cLv  : cLv . Linearity shown similarly to above.

Zero Function: Ov  : 0. Vector field axioms are satisfied with these definitions (check them!).

Concretely: Space of linear transformations in the plane: LR2,R2 is identified with spaceM22 of A 
a b

c d
.

Standard basis: E11 
1 0

0 0
, E12 

0 1

0 0
, E21 

0 0

1 0
, E22 

0 0

0 1
.

Every matrix uniquely written as: A 
a b

c d
 aE11  bE12  cE21  dE22.

Dual Spaces

Definition: The dual space to a vector space V is the vector space V  LV,R consisting of all

real valued linear functions  : V  R.

If V  Rn, then, by previous them, every linear function  : Rn  R is given by multiplication by 1  n matrix, i.e., a row vector.

v   a
T
v  a1v1 anvn.

Therefore, we can identify the dual space Rn with the space of row vectors with n entries.



Row vectors should more properly be viewed as real valued linear functions, the dual objects to column vectors.

Theorem: Let V be a finite dimensional real inner product space. Then every linear function  : V  R is given by

taking the inner product with a fixed vector a  V : v   a , v .

Proof: Let v 1, , v n be a basis of V. If we write v  y1 v 1 yn v n, then, by linearity,

v   y1v 1  ynv n   b1y1 bnyn, where bi  u i . 

On the other hand, if we write a  x1 v 1 xn v n, then

a , v   i,j1
n x jy iv i, v j    i,j1

n gijx jy i,  

where G  gij is the n  n Gram matrix with entries gij  v i, v j .

Equality of  and   requires that Gx  b , where x  x1, ,xnT, b  b1, ,bnT.

Invertibility of G is guaranteed by Theorem 3.34 allows us to solve for x  G1b and

thereby construct the desired a .

In particular, if v 1, , v n is an orthonormal basis, then G  1 and hence a  b1 v 1 bn v n. 

Example: Write down a basis for, and dimension of, the linear function space LP3,R.

This is 4D. In particular, if you view the polynomials as vectors in R4, the polynomial a3x3  a2x2  a1x  a0

can be written a3,a2,a1,a0, with basis L0  0,0,0, 1T, L1  0,0,1, 0T, etc.

Example: Given a basis v 1, , v n of V, let the dual basis 1, , n of V consists of the linear functions uniquely defined by

the requirements iv j 
1 if i  j,

0 if i  j.
Find the dual basis for: v 1  1,1,0, v 2  1,0,1, and v 3  0,1,1.

Note we were given column vectors. However, we are looking for elements i of R3
 (row vectors) such that

iv j 
1 if i  j,

0 if i  j.

Let’s require 1v 1  11,1,0  11, 12, 13T1,1,0  1.

And similarly that 11, 12, 13T1,0,1  11, 12, 13T0,1,1  0.

From this we get: 11  12  1, 11  13  0, 12  13  0.



 From the 2nd two eqs: 11  13, 12  13, so 11  12  13.

 From the 1st eq: 11  12  211  1 or 11  1
2 . Therefore: 11, 12, 13 

1
2 ,

1
2 ,

1
2 .

Let’s require 2v 2  21,0,1  21, 22, 23T1,0,1  1.

And similarly that 21, 22, 23T1,1,0  21, 22, 23T0,1,1  0.

From this we get: 21  23  1, 21  22  0, 22  23  0.

 21  23  22 and 21  1
2 . Therefore: 21, 22, 23 

1
2 ,

1
2 ,

1
2 .

Similarly, we find 31, 32, 33   1
2 ,

1
2 ,

1
2 .

Therefore, the dual basis is 1
2 ,

1
2 ,

1
2 , 1

2 ,
1
2 ,

1
2 ,  1

2 ,
1
2 ,

1
2 .

Composition

So far, we’ve added linear functions, and multiplied them by scalars.

What about composing them?

Lemma: Let V,W,Z be vector spaces. If L : V  W and M : W  Z are linear functions,

then the composite function M  L : V  Z, defined by M  Lv  : MLv 

is also linear.

Proof: M  Lcv  dw  MLcv  dw (definition)

 McLv   dLw (linearity of L)

 cMLv   dMLw (linearity ofM)

 cM  Lv   dM  Lw (definition) 

Concretely: The commutator of two linear transformations L,M : V  V on a vector space V is:

K : L,M : L  M  M  L, where L,M is referred to as a Lie bracket.

Prove that the commutator K is a linear transformation on V.

Kav  bw  L,Mav  bw  L  M  M  Lav  bw (definition of K)



 LMav  bw  MLav  bw (definition of composition)

 LaMv   bMw  MaLv   bLw (linearity of L,M)

 aLMv   bLMw  aMLv   bMLw (linearity of L,M)

 aLMv   aMLv   bLMw  bMLw (algebra)

 aL  Mv   M  Lv   bL  Mw  M  Lw (definition of composition)

 aL  M  M  Lv   bL  M  M  Lw  aL,Mv   bL,Mw (definition of K)

 aKv   bKw. (definition of K)

The Jacoby Identity: L,M,N  N,L,M  M,N,L  O.

Applications: Cross product a  b and Lie bracket operation L,M satisfy the Jacobi identity. In analytical mechanics,

the Jacobi identity is satisfied by the Poisson brackets  f,g. In quantum mechanics, it is satisfied by

operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics

by theMoyal bracket  f,g.

Prove that the Jacoby Identity: L,M,N  N,L,M  M,N,L  O is valid for any three transformations.

L,M,N  L,M  N  N  L,M  L  M  M  L  N  N  L  M  M  L

 L  M  N  M  L  N  N  L  M  N  M  L  L  M  N  M  L  N  N  L  M  N  M  L

Similarly: N,L,M  N  L  M  L  N  M  M  N  L  M  L  N,

and M,N,L  M  N  L  N  M  L  L  M  N  L  N  M.

Therefore: L,M,N  N,L,M  M,N,L

 L  M  N  M  L  N  N  L  M  N  M  L  N  L  M  L  N  M  M  N  L  M  L  N

 M  N  L  N  M  L  L  M  N  L  N  M

 L  M  N  L  M  N  L  N  M  L  N  M  N  L  M  N  L  M  N  M  L  N  M  L

 M  N  L  M  N  L  M  L  N  M  L  N

 O. 



Inverses

Do linear functions have inverses? We’ve seen that square matrices do.

More generally, we have the following:

Definition: Let L : V  W be a linear function. IfM : W  V is a function such that:

L  M  IW, M  L  IV,   

are equal to the identity function (in their respective spaces), then we call M the

inverse of L and write M  L1.

In other words, being an inverse requires: LMw  w for all w  W, and MLv   v for all v  V.

When it exists, the inverse is unique (proof part of book exercise)!

Informally: Observe that since we relabeled the right- and left-inverse (M ) of L as L1 in   , then L11  L.

Lemma: If it exists, the inverse of a linear function is also a linear function.

Proof: Let L,M satisfy the conditions of the previous definition.

Given w,w
  W. We wish to show that M is linear, or (given scalars c,d) that M cw  dw


 cMw  dM w


.

Since M and L are inverses, we note w  L  Mw  LMw,

and w

 L  M w


 L M w


.

Therefore, using only linearity of L :

M cw  dw


 M cLMw  dL M w


(from above)

 M L cMw  dM w


(linearity of L)

 M  L cMw  dM w


(definition of composition)

 cMw  dM w

, (M and L are inverses)

proving linearity ofM. 

On finite dimensional domains, since linear transformations can be written as matrices, this results in a very simple situation.



That is, recall that if V  Rn, W  Rm, such that L,M are given by matrix multiplication by A and B respectively,

then the inverse definition’s conditions    reduce to the usual conditions: AB  I  BA.

In particular, I is an n  n matrix, requiring m  n, and for its coefficient matrix A to be nonsingular.

However, on infinite dimensional function spaces, things are more subtle.

Concretely: Let D f   f  represent differentiation on C1a,b, and

J f   g represent integration, where gx  
a

x
fydy on C0a,b.

We often consider these "inverse" operations.

Indeed, observe that D  J f   DJf  Dg  g  f, since

gx  d
dx

a

x
fydy  fx. (Fund. Thm. Calc)

However, what about J  D f  ? This is JD f   J f   h, where

hx  
a

x
f ydy  fx  fa.

So hx  fx, unless fa  0. So, J  D  IC1a,b.

In other words, D is a left-inverse for J, but not a right-inverse!

If we restrict D to V :  f : fa  0  C1a,b, then an inverse is defined (as seen above).

But notice that V  C1a,b  C0a,b.

So J defines a one-to-one invertible, linear map from a vector space C0a,b to a proper subspace V  C0a,b !

This can’t happen in finite dimensions. A matrix (linear map) is invertible only when the size of it’s image is the

same as it’s domain and codomain.



Concretely: Determine if linear function L : R2  R2 defined by reflection through the x-axis

has an inverse. If so, describe it.

How does this transformation Lx,y  x,y affect the basis vectors? ...

L1,0  1,0, L0,1  0,1.

Therefore: Lx,y  Ax  Le 1 Le 2 x 
1 0

0 1
x .

And observe that A1  1
|A |

1 0

0 1


1 0

0 1
 A.

So, yes L has an inverse. And it is its own inverse (Which intuitively/geometrically makes sense)!


