## Applied Linear Algebra

Instructor: Jodin Morey moreyjc@umn.edu

### 5.2 Minimization of Quadratic Functions

Simplest type of function to minimize is a nonlinear quadratic function (linear have no extrema).

linear

quadratic

Later, we will minimize general quadratic functions of $n$ variables. But first:
$\mathbf{n}=\mathbf{1}: \quad p(x)=a x^{2}+2 b x+c$.

## Calculus Method

Note if $a>0, p(x)$ opens up, one global minimum. If $a<0$, opens down, no minimum.

Calculus: take derivative, set it to zero, solve to find local extrema $p\left(x^{*}\right)$.
$p^{\prime}(x)=2 a x+2 b \quad \Rightarrow \quad x^{*}=-\frac{b}{a}$ and $p\left(x^{*}\right)=c-\frac{b^{2}}{a}$.
$p^{\prime \prime}(x)=2 a>0$. So, if $a>0$, then $p\left(x^{*}\right)$ is local minimum.

## General Method

Rewrite as: $p(x)=a\left(x+\frac{b}{a}\right)^{2}+\left(c-\frac{b^{2}}{a}\right)$.

Observe $a>0 \Rightarrow$ first-term $\geq 0$. Moreover, $\min$ attained at $x^{*}=-\frac{b}{a}$.

Second term is constant, and so unaffected by $x$.

Thus, global minimum $\left(c-\frac{b^{2}}{a}\right)$ (not just extrema) is attained at $x^{*}=-\frac{b}{a}$.

Now generalize to any \# of vars!
$\mathbf{n} \geq \mathbf{1}: \quad p(\vec{x})=p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i, j=1}^{n} k_{i j} x_{i} x_{j}-2 \sum_{i=1}^{n} f_{i} x_{i}+c$

Without loss of generality, we can assume $k_{i j}=k_{j i}$.

Example: $\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=x^{2}+6 x y+y^{2}$ and $\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=x^{2}+6 x y+y^{2}$.
$p(\vec{x})$ is more general than quadratic form: has linear \& constant terms.

Rewrite as: $p(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}-2 \vec{x}^{T} \vec{f}+c$, where $\mathbf{K}=\left(k_{i j}\right)$ and $\vec{f}=\left(f_{i}\right)$.

Example: $p(\vec{x})=4 x_{1}^{2}-2 x_{1} x_{2}+3 x_{2}^{2}+3 x_{1}-2 x_{2}+1$.

Rewriten: $p(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}-2 \vec{x}^{T} \vec{f}+c=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{cc}4 & -1 \\ -1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]-2\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{c}-\frac{3}{2} \\ 1\end{array}\right]+1$.

In multi-var version, instead of requiring $a>0$ (as we had in single-var case),
we need $\mathbf{K}>0$ in order to obtain a unique minimum.

Theorem: If $\mathbf{K}>0$ (and hence symmetric), then quadratic function $p(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}-2 \vec{x}^{T} \vec{f}+c$
has a unique minimizer, which is the solution to the linear system $\mathbf{K} \vec{x}=\vec{f}$, namely $\vec{x}^{*}=\mathbf{K}^{-1} \vec{f}$.
The minimum value of $p(\vec{x})$ is equal to any of the following expressions:

$$
\begin{equation*}
p\left(\vec{x}^{*}\right)=p\left(\mathbf{K}^{-1} \vec{f}\right)=c-\vec{f}^{T} \mathbf{K}^{-1} \vec{f}=c-\vec{f}^{T} \vec{x}^{*}=c-\left(\vec{x}^{*}\right)^{T} \mathbf{K} \vec{x}^{*} \tag{*}
\end{equation*}
$$

Proof: Recall positive definiteness implies $\mathbf{K}$ is nonsingular, hence $\mathbf{K} \vec{x}=\vec{f}$ has unique solution $\vec{x}^{*}=\mathbf{K}^{-1} \vec{f}$.

But is it the unique minimizer of $p(\vec{x})$ ?

Well, $\forall \vec{x} \in \mathbb{R}^{n}$, if $\vec{f}=\mathbf{K} \vec{x}^{*}$, it follows that $p(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}-2 \vec{x}^{T} \vec{f}+c$
$=\vec{x}^{T} \mathbf{K} \vec{x}-2 \vec{x}^{T} \mathbf{K} \vec{x}^{*}+c$
$=\vec{x}^{T} \mathbf{K} \vec{x}-\vec{x}^{T} \mathbf{K} \vec{x}^{*}-\left(\vec{x}^{T} \mathbf{K} \vec{x}^{*}\right)^{T}+c \quad$ (since the transpose of a constant is itself)
$=\vec{x}^{T} \mathbf{K} \vec{x}-\vec{x}^{T} \mathbf{K} \vec{x}^{*}-\left(\vec{x}^{*}\right)^{T} \mathbf{K} \vec{x}+\left(\vec{x}^{*}\right)^{T} \mathbf{K} \vec{x}^{*}+\left[c-\left(\vec{x}^{*}\right)^{T} \mathbf{K} \vec{x}^{*}\right]$
$=\vec{x}^{T} \mathbf{K}\left(\vec{x}-\vec{x}^{*}\right)-\left(\vec{x}^{*}\right)^{T} \mathbf{K}\left(\vec{x}-\vec{x}^{*}\right)+\left[c-\left(\vec{x}^{*}\right)^{T} \mathbf{K} \vec{x}^{*}\right] \quad$ (factoring out)

$$
=\left(\vec{x}-\vec{x}^{*}\right)^{T} \mathbf{K}\left(\vec{x}-\vec{x}^{*}\right)+\left[c-\left(\vec{x}^{*}\right)^{T} \mathbf{K} \vec{x}^{*}\right], \quad \text { (factoring out again) } \quad(* *)
$$

The first term in (**) has form $\vec{y}^{T} \mathbf{K} \vec{y}$, where $\vec{y}=\vec{x}-\vec{x}^{*}$.

Since we assumed $\mathbf{K}$ is positive definite, we know $\vec{y}^{T} \mathbf{K} \vec{y}>0$ for all $\vec{y} \neq \overrightarrow{0}$.

Thus, the first term achieves its minimum value (namely zero) iff $\overrightarrow{0}=\vec{y}=\vec{x}-\vec{x}^{*}$.

Since $\vec{x}^{*}$ is fixed, the second, bracketed term in $(* *)$ doesn't depend on $\vec{x}$, and hence the minimizer of $p(\vec{x})$ coincides with the minimizer of the first term, namely $\vec{x}=\vec{x}^{*}$.

Moreover, the minimum value of $p(\vec{x})$ is equal to the constant term: $p\left(\vec{x}^{*}\right)=c-\left(\vec{x}^{*}\right)^{T} \mathbf{K} \vec{x}^{*}$.

The alternative expressions in (*) follow from simple substitutions.

Continued Example: Find minimizer of
$p(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}-2 \vec{x}^{T} \vec{f}+c=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{cc}4 & -1 \\ -1 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]-2\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{c}-\frac{3}{2} \\ 1\end{array}\right]+1$.

According to the thm, we must solve: $\mathbf{K} \vec{x}=\vec{f}$, which from above is:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
4 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{3}{2} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
4 & -1 & -\frac{3}{2} \\
-1 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
4 & -1 & -\frac{3}{2} \\
0 & \frac{11}{4} & \left\lvert\, \frac{5}{8}\right.
\end{array}\right]}
\end{aligned}
$$

K appears regular, with positive pivots. Therefore: $\mathbf{K}>0$ and $p(\vec{x})$ does have a global minimum.

Solving yields minimizer is: $\vec{x}^{*}=\left[\begin{array}{cc}-\frac{7}{22} \\ \frac{5}{22}\end{array}\right]$.

Therefore the minimum (most easily acquired from $p\left(\vec{x}^{*}\right)=c-\vec{f}^{T} \vec{x}^{*}$ from the thm) is

$$
p\left(\vec{x}^{*}\right)=p\left(-\frac{7}{22}, \frac{5}{22}\right)=1-\left[\begin{array}{ll}
-\frac{3}{2} & 1
\end{array}\right]\left[\begin{array}{c}
-\frac{7}{22} \\
\frac{5}{22}
\end{array}\right]=\frac{13}{44} .
$$

$$
\text { Example: For } \mathbf{K}=\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 3
\end{array}\right], \vec{f}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] \text {, and } c=-3 \text {, write out the quadratic function } p(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}-2 \vec{x}^{T} \vec{f}^{\prime}+c
$$ where $\vec{x} \in \mathbb{R}^{n}$. Then either find the minimizer $\vec{x}^{*}$ and minimum value $p\left(\vec{x}^{*}\right)$, or explain why there is none. According to the thm, we must solve: $\mathbf{K} \vec{x}=\vec{f}$, which from above is:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right] .} \\
& {\left[\begin{array}{ccc|c}
3 & -1 & 1 & 1 \\
-1 & 2 & -1 & 0 \\
1 & -1 & 3 & -2
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
3 & -1 & 1 & 1 \\
0 & \frac{5}{3} & -\frac{2}{3} & \frac{1}{3} \\
0 & 1 & 2 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
3 & -1 & 1 & 1 \\
0 & \frac{5}{3} & -\frac{2}{3} & \frac{1}{3} \\
0 & 0 & 12 & -7
\end{array}\right] .}
\end{aligned}
$$

K was regular, with positive pivots. Therefore: $\mathbf{K}>0$ and $p(\vec{x})$ does have a global minimum.

Solving for minimizer: $\vec{x}^{*}=\left[\begin{array}{c}\frac{7}{12} \\ -\frac{1}{6} \\ -\frac{11}{12}\end{array}\right]$.

Therefore the minimum (most easily acquired from $p\left(\vec{x}^{*}\right)=c-\vec{f}^{T} \vec{x}^{*}$ from the thm) is

$$
p\left(\vec{x}^{*}\right)=p\left(-\frac{7}{22}, \frac{5}{22}\right)=-3-\left[\begin{array}{lll}
1 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
\frac{7}{12} \\
-\frac{1}{6} \\
-\frac{11}{12}
\end{array}\right]=-\frac{65}{12} .
$$

