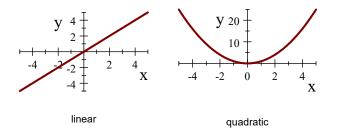
5.2 Minimization of Quadratic Functions

Simplest type of function to minimize is a nonlinear quadratic function (linear have no extrema).



Later, we will minimize general quadratic functions of *n* variables. But first:

n = 1:
$$p(x) = ax^2 + 2bx + c$$
.

Calculus Method

Note if a > 0, p(x) opens up, one global minimum. If a < 0, opens down, no minimum.

Calculus: take derivative, set it to zero, solve to find local extrema $p(x^*)$.

$$p'(x) = 2ax + 2b \quad \Rightarrow \quad x^* = -\frac{b}{a} \text{ and } p(x^*) = c - \frac{b^2}{a}.$$

p''(x) = 2a > 0. So, if a > 0, then $p(x^*)$ is local minimum.

General Method

Rewrite as: $p(x) = a(x + \frac{b}{a})^2 + (c - \frac{b^2}{a}).$

Observe $a > 0 \implies$ first-term ≥ 0 . Moreover, min attained at $x^* = -\frac{b}{a}$.

Second term is constant, and so unaffected by *x*.

Thus, global minimum $(c - \frac{b^2}{a})$ (not just extrema) is attained at $x^* = -\frac{b}{a}$.

Now generalize to any # of vars!

n
$$\geq$$
 1: $p(\vec{x}) = p(x_1, ..., x_n) = \sum_{i,j=1}^n k_{ij} x_i x_j - 2 \sum_{i=1}^n f_i x_i + c$

Without loss of generality, we can assume $k_{ij} = k_{ji}$.

Example:
$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + 6xy + y^2$$
 and $\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x^2 + 6xy + y^2$.

 $p(\vec{x})$ is more general than quadratic form: has linear & constant terms.

Rewrite as:
$$p(\vec{x}) = \vec{x}^T \mathbf{K} \vec{x} - 2\vec{x}^T \vec{f} + c$$
, where $\mathbf{K} = (k_{ij})$ and $\vec{f} = (f_i)$.

Example: $p(\vec{x}) = 4x_1^2 - 2x_1x_2 + 3x_2^2 + 3x_1 - 2x_2 + 1$.

Rewriten:
$$p(\vec{x}) = \vec{x}^T \mathbf{K} \vec{x} - 2\vec{x}^T \vec{f} + c = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 2\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix} + 1.$$

In multi-var version, instead of requiring a > 0 (as we had in single-var case),

we need $\mathbf{K} > 0$ in order to obtain a *unique* minimum.

Theorem: If $\mathbf{K} > 0$ (and hence symmetric), then quadratic function $p(\vec{x}) = \vec{x}^T \mathbf{K} \vec{x} - 2\vec{x}^T \vec{f} + c$ has a unique minimizer, which is the solution to the linear system $\mathbf{K} \vec{x} = \vec{f}$, namely $\vec{x}^* = \mathbf{K}^{-1} \vec{f}$. The minimum value of $p(\vec{x})$ is equal to any of the following expressions:

$$p(\vec{x}^*) = p(\mathbf{K}^{-1}\vec{f}) = c - \vec{f}^T \mathbf{K}^{-1}\vec{f} = c - \vec{f}^T \vec{x}^* = c - (\vec{x}^*)^T \mathbf{K}\vec{x}^*.$$
(*)

Proof: Recall positive definiteness implies **K** is nonsingular, hence $\mathbf{K}\vec{x} = \vec{f}$ has unique solution $\vec{x}^* = \mathbf{K}^{-1}\vec{f}$.

But is it the unique minimizer of $p(\vec{x})$?

Well, $\forall \vec{x} \in \mathbb{R}^n$, if $\vec{f} = \mathbf{K}\vec{x}^*$, it follows that $p(\vec{x}) = \vec{x}^T \mathbf{K}\vec{x} - 2\vec{x}^T\vec{f} + c$

 $= \vec{x}^T \mathbf{K} \vec{x} - 2\vec{x}^T \mathbf{K} \vec{x}^* + c$

 $= \overrightarrow{x}^{T} \mathbf{K} \overrightarrow{x} - \overrightarrow{x}^{T} \mathbf{K} \overrightarrow{x}^{*} - \left(\overrightarrow{x}^{T} \mathbf{K} \overrightarrow{x}^{*} \right)^{T} + c$

(since the transpose of a constant is itself)

- $= \vec{x}^{T} \mathbf{K} \vec{x} \vec{x}^{T} \mathbf{K} \vec{x}^{*} (\vec{x}^{*})^{T} \mathbf{K} \vec{x} + (\vec{x}^{*})^{T} \mathbf{K} \vec{x}^{*} + [c (\vec{x}^{*})^{T} \mathbf{K} \vec{x}^{*}]$ (distributed transpose, and added/subtracted same term)
- $= \vec{x}^{T} \mathbf{K} (\vec{x} \vec{x}^{*}) (\vec{x}^{*})^{T} \mathbf{K} (\vec{x} \vec{x}^{*}) + [c (\vec{x}^{*})^{T} \mathbf{K} \vec{x}^{*}] \quad \text{(factoring out)}$

$$= \left(\vec{x} - \vec{x}^*\right)^T \mathbf{K} \left(\vec{x} - \vec{x}^*\right) + \left[c - \left(\vec{x}^*\right)^T \mathbf{K} \vec{x}^*\right], \quad \text{(factoring out again)} \quad (* *)$$

The first term in (* *) has form $\vec{y}^T \mathbf{K} \vec{y}$, where $\vec{y} = \vec{x} - \vec{x}^*$.

Since we assumed **K** is positive definite, we know $\vec{y}^T \mathbf{K} \vec{y} > 0$ for all $\vec{y} \neq \vec{0}$.

Thus, the first term achieves its minimum value (namely zero) iff $\vec{0} = \vec{y} = \vec{x} - \vec{x}^*$.

Since \vec{x}^* is fixed, the second, bracketed term in (* *) doesn't depend on \vec{x} , and hence the minimizer of $p(\vec{x})$ coincides with the minimizer of the first term, namely $\vec{x} = \vec{x}^*$.

Moreover, the minimum value of $p(\vec{x})$ is equal to the constant term: $p(\vec{x}^*) = c - (\vec{x}^*)^T \mathbf{K} \vec{x}^*$.

The alternative expressions in (*) follow from simple substitutions.

Continued Example: Find minimizer of

$$p(\vec{x}) = \vec{x}^T \mathbf{K} \vec{x} - 2\vec{x}^T \vec{f} + c = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - 2\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix} + 1.$$

According to the thm, we must solve: $\mathbf{K}\vec{x} = \vec{f}$, which from above is:

 $\begin{bmatrix} 4 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} \\ 1 \end{bmatrix}.$ $\begin{bmatrix} 4 & -1 & | & -\frac{3}{2} \\ -1 & 3 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & -1 & | & -\frac{3}{2} \\ 0 & \frac{11}{4} & | & \frac{5}{8} \end{bmatrix}.$

K appears regular, with positive pivots. Therefore: $\mathbf{K} > 0$ and $p(\vec{x})$ does have a global minimum.

Solving yields minimizer is: $\vec{x}^* = \begin{bmatrix} -\frac{7}{22} \\ \frac{5}{22} \end{bmatrix}$.

Therefore the minimum (most easily acquired from $p(\vec{x}^*) = c - \vec{f}^T \vec{x}^*$ from the thm) is

$$p(\vec{x}^*) = p(-\frac{7}{22}, \frac{5}{22}) = 1 - \left[-\frac{3}{2}, 1\right] \begin{bmatrix} -\frac{7}{22} \\ \frac{5}{22} \end{bmatrix} = \frac{13}{44}.$$

Example: For $\mathbf{K} = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 3 \end{bmatrix}$, $\vec{f} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$, and c = -3, write out the quadratic function $p(\vec{x}) = \vec{x}^T \mathbf{K} \vec{x} - 2\vec{x}^T \vec{f} + c$,

where $\vec{x} \in \mathbb{R}^n$. Then either find the minimizer \vec{x}^* and minimum value $p(\vec{x}^*)$, or explain why there is none.

According to the thm, we must solve: $\mathbf{K}\vec{x} = \vec{f}$, which from above is:

$$\begin{bmatrix} 3 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}.$$

$$\begin{bmatrix} 3 & -1 & 1 & | & 1 \\ -1 & 2 & -1 & | & 0 \\ 1 & -1 & 3 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & 1 & | & 1 \\ 0 & \frac{5}{3} & -\frac{2}{3} & | & \frac{1}{3} \\ 0 & 1 & 2 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & 1 & | & 1 \\ 0 & \frac{5}{3} & -\frac{2}{3} & | & \frac{1}{3} \\ 0 & 1 & 2 & | & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & -1 & 1 & | & 1 \\ 0 & \frac{5}{3} & -\frac{2}{3} & | & \frac{1}{3} \\ 0 & 0 & 12 & | & -7 \end{bmatrix}.$$

K was regular, with positive pivots. Therefore: $\mathbf{K} > 0$ and $p(\vec{x})$ does have a global minimum.

Solving for minimizer: $\vec{x}^* = \begin{bmatrix} \frac{7}{12} \\ -\frac{1}{6} \\ -\frac{11}{12} \end{bmatrix}$.

Therefore the minimum (most easily acquired from $p(\vec{x}^*) = c - \vec{f}^T \vec{x}^*$ from the thm) is

$$p(\vec{x}^*) = p(-\frac{7}{22}, \frac{5}{22}) = -3 - \begin{bmatrix} 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} \frac{7}{12} \\ -\frac{1}{6} \\ -\frac{11}{12} \end{bmatrix} = -\frac{65}{12}.$$