Applied Linear Algebra

Instructor: Jodin Morey = moreyjc@umn.edu

5.2 Minimization of Quadratic Functions

Simplest type of function to minimize is a nonlinear quadratic function (linear have no extrema).

quadratic

Later, we will minimize general quadratic functions of » variables. But first:

n=1: p(x) = ax? + 2bx + c.

Calculus Method

Note if a > 0, p(x) opens up, one global minimum. If a < 0, opens down, no minimum

Calculus: take derivative, set it to zero, solve to find local extrema p(x*).

p'(x) =2ax+2b = x*=-Landpx*)=c-L2

p'(x) =2a > 0. So,ifa > 0, then p(x*) is local minimum.

General Method

Rewrite as: p(x) = a(x + %)2 + (C - %)

Observea >0 = first-term > 0. Moreover, min attained at x* = —2

a

Second term is constant, and so unaffected by x.

Thus, global minimum (¢ — sz) (not just extrema) is attained at x* = —2

Now generalize to any # of vars!
n > 1:

p(X) = plxi,....xn) = Z:-:l kijxixj — 2Zf=1fixi +c



Without loss of generality, we can assume k;; = kj;. (17! see exercise 3.4.15)
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Example.[xy}|:4 | :||:y:|—x +6xy+y and[ny|:3 | :||:y:|—x + 6xy + y°.

p(¥) is more general than quadratic form: has linear & constant terms.
Rewrite as: p(¥) = ¥ KX — 2?7 + ¢, where K = (k;;) and 7 = (f).

Example: p(¥) = 4x? — 2x;x2 + 3x3 + 3x; — 2x, + 1.
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Rewriten: p(¥) = yTK?—2?T7+c =[x x2:||: ; :||: X1 :| —2[x1 x2] 2 + 1.
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In multi-var version, instead of requiring ¢ > 0 (as we had in single-var case),

we need K > 0 in order to obtain a unigue minimum.

Theorem: If K > 0 (and hence symmetric), then quadratic function p(¥) = ¥ KX - 2% f + ¢

- -
has a unique minimizer, which is the solution to the linear system KX = £, namely X" = K' 1.

The minimum value of p(¥) is equal to any of the following expressions:

p<?>=p<K’17>=c—7 K*ﬁ‘):c—?f> =c-(* >TK?. (*)
Proof: Recall positive definiteness implies K is nonsingular, hence KX = f has unique solution ¥~ = K~'7.

But is it the unique minimizer of p(X)?

Well, VX € R”, if f = KX, it follows that
p(@) = KZ -2 f+c

Ty — — Ty ,—*
=x Ki¥ =2x Kx +c¢

T T T T . ..
Y KX -X' KX - (? K?*> +c (since the transpose of a constant is itself)

ST, — ST, —* —xk\ I —x\ I * >k \ [y —>%
=x K¥—-x KxX - <X > I(?-f- <X > I(? + I:C— <X > Kx ] (distributed transpose, and added/subtracted same term)

?TK<? — ?*> — (?*> TK(? - ?*> + [c - <?*> "K3* ] (factoring out)



= <? - ?*> TK(? - ?*> + [c - <?*> "Kx* ], (factoring out again) (%)
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The first term in (* *) has form ¥’ K3, where ¥
Since we assumed K is positive definite, we know ' K3 > 0 for all 7 # 0.

N
Thus, the first term achieves its minimum value (namely zero) iff 0 = 3 =

Since X" is fixed, the second, bracketed term in (* *) doesn’t depend on X, and hence the minimizer of p(X)

coincides with the minimizer of the first term, namely ¥ = X"
Moreover, the minimum value of p(¥) is equal to the constant term: p(¥*) = ¢ — (¥") "Kz".
The alternative expressions in (x) follow from simple substitutions. |
Continued Example: Find minimizer of

3
p(?):?TK?_H)T?JrC:[xl x2:||: 41 ! :||: . :|—2|:xl X2 | 12 + 1.
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N
According to the thm, we must solve: KX = f, which from above is:

. . o . . . *
Solving yields minimizer is: X~ =

Therefore the minimum (most easily acquired from p(x ) =c— f X from the thm) is

7

() =p(C-F5) = 1-[=3 1] O |-
22
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Example: ForK=| -1 2 -1 [, /=] o

I -1 3 -2

. . . T T2
,and ¢ = -3, write out the quadratic function p(¥) = ¥ K¥ - 2% f +¢,
where X € R”. Then either find the minimizer ¥ and minimum value p(X"*), or explain why there is none.

-
According to the thm, we must solve: KX = f, which from above is:

3 -1 1 X1
12 - w =] o
1 -1 3 X3 )
3 111 341 1 |1 3211 |1
12 110 > 03 5|5 [~] 05 %7
1 -1 3 | =2 01 2 | =2 00 12 | -7

p(F) =p(—F5)=-3-[10 -2]| —+ |=-%.



