Applied Linear Algebra

Instructor: Jodin Morey = moreyjc@umn.edu

4.4 Orthogonal Projections and Subspaces
Orthogonal Projection

Definition: A vector Z € V is said to be orthogonal to a subspace W < V if it is orthogonal

to every vector in W, so (Z,w) = 0 forall w € W.

Definition: The orthogonal projection of il onto a subspace W is the element w € W

that makes the difference Z = % — W = % — Projw(u) orthogonal to W. -
u - proj{u

(used in least squares minimization and data fitting)
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Theorem: Let %71, ..., 7, be an orthonormal basis for the subspace W < V.
Then the orthogonal projection of Vv € ¥ onto w € W is given by

— — — — = .
W=ciy+...+cin, Wherec; = (V,u;), i = 1,...,n.

Definition: The orthogonal projection of il onto a subspace W is the element w € W

that makes the difference Z = @ — W = % — Projw(u) orthogonal to W. -
u - proj{u

(used in least squares minimization and data fitting)
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Theorem: Let %71, ..., 7, be an orthonormal basis for the subspace W < V.
Then the orthogonal projection of V € ¥ onto w € W is given by

— — — — — .
W=ciuy+...+catiy, Where c; = (V,u;), i =1,...,n. (%)

Proof: Since %1, ...,u, form a basis of the subspace, the orthogonal projection element w must be

some linear combination thereof: w = ciu | +...+Cpti .

Definition above requires the difference Z = ¥V — W be orthogonal to W, and, as noted above,



it suffices to check orthogonality to the basis vectors. By our orthonormality assumption:

~y

0= @7 = F =) = (V=171 =~y T, T

b

= <V,7l> — C1<71,7i> ... _Cn<7n,7i> = <7,7,> — Cj.

The coefficients ¢; = (V, ;) of the orthogonal projection W are therefore uniquely prescribed by

the orthogonality requirement, which thereby proves its uniqueness. [

More generally, with an orthogonal basis, the previous argument will show the orthogonal projection

— =
Vi

of vV onto Wis givenby: w = a| Vv, +...+a,Vv,, where q; = i=1,...,n

B
Concretely: Consider the plane W — R?* spanned by orthogonal vectors v, = (1,-2,1) and V> = (1,1,1).

According to the formula above, the orthogonal projection of v = (1,0,0) onto W is
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Alternatively, we can replace V1, V» by the orthonormal basis: 7| =
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0 The orthogonal projection formula includes the orthogonal basis formula as a special case.

Orthogonal Subspaces

Subspaces can be orthogonal.

Vvt

Definition: Two subspaces W,Z < V are called orthogonal subspaces if every vector in W is orthogonal to every vector in Z.



Lemma: If Wy,..., W, span W, and 7, ..., 7, span Z, then W and Z are orthogonal subspaces iff (w;,Z;) = 0

foralli=1,...,kandj = 1,...,L
So W1Z iff every basis element of /' is orthogonal to every basis element of Z.

Example: Let /¥ be the span of w; = (1,-2,0,1)” and W, = (3,-5,2,1)7, and let Z be the span of 71 = (3,2,0,1)” and
Z) = (1,0,—1,—1)T. Are W and Z are orthogonal?

You can checkthat?v’l '?1 = Wl '?2 = V_V>2 '?1 = WQ '?2 =0.

Therefore, W and Z are orthogonal 2D subspaces of R* with respect to Euclidean dot product.

Definition: The orthogonal complement of a subspace W < V, denoted W*, is defined as the set of all vectors that are

orthogonal to Wz so W* = {V € V' | (¥,W) = O forallw € W}.  (depends upon choice of inner product)
Concretely: Let W = {(t, 2,307 1t e R} be the line (1D subspace) in the direction of W, = (1,2,3)” € R>.

Under dot product, its orthogonal complement W+ = W is the plane passing through the origin having normal vector ;.

In other words, Z = (x,y,z)" € W*iff Z « W, = x + 2y + 3z = 0. Thus, W* is characterized as the solution space

of the homogeneous linear equation above, or equivalently, the kernel of A = W{ = |: 123 :|

We can write the general solution in the form: Z = 7?
-2y -3z -2 -3

y =yl 1 +z| 0 =yZ1+222,
z 0 1

where y,z are the free variables. So 2, = (-2,1,0)" and Z, = (-3,0,1) form a (non-orthogonal) basis for #7*.

Proposition: Suppose that W < V'is a finite dimensional subspace of an inner product space.

Then every vector Vv € V can be uniquely decomposed into V = W + Z, where w € Wand Z € W*.

Proof: Let W € W be orthogonal projection of ¥ onto . Then, Z = V — W is, by definition, orthogonal to  and

hence belongs to W*.
Note that Z can be viewed as orthogonal projection of ¥ onto complementary subspace W* (if it’s finite dimensional).

Now we just need uniqueness. If we are given two such decompositions, v = w +



The left-hand side of this equation lies in ¥, while the right-hand side belongs to W*.

But, as we already noted, the only vector that belongs to both W and W* is the zero vector.

li bd li ! ! . .
Thus, w—w =0 =2 —Z,sow =W and Z = Z, which proves uniqueness. [ |

Proposition: If /' < V'is a subspace with dim W = n and dim V' = m, then dim W* = m — n.

Proposition: If /¥ is a finite dimensional subspace of an inner product space, then (W*)* = W.

Orthogonality of the Fundamental Matrix Subspaces and the Fredholm Alternative

Theorem: Let A be a real m x n matrix. Then A’s kernel and coimage are orthogonal complements as subspaces of R”
under the dot product. Also, A’s cokernel and image are orthogonal complements in R”:
kerA = (coimgA)* < R”, coker A = (imgA)* < R™

Proof: ¥ € R” lies in ker A iff AXY = 0. Observe, the i entry of AX equals product of i* row 7, of A and ¥.

-7 -
But 7, x = r;

- X = 0, iff X’ is orthogonal to 7’;. Therefore, X € ker A iff X is orthogonal to all rows of A.
Since these rows span coimg A, this is equivalent to X lying in (coimg A)*, which proves the first statement.

Orthogonality of the image and cokernel follows by the same argument applied to A”. |

Therefore (given the rank/nullity thm):

Theorem (Fredholm Alternative, "FH"): AX = b has a solution iff b is orthogonal to the cokernel of A.

Indeed, since A’s cokernel and image are orthogonal compliments, and dim(cokerA) + dim(imA) = m,

— -
b # 0 must either be in the cokernel or the image. If b is in the image, by the previous theorem it is orthogonal to the cokernel.

If it is in the cokernel, it is orthogonal to the image, and the system has no solution.
s . - - > - =
Thus, the compatibility conditions for AxX = b are: y « b = 0 for every y such that A"y = 0.

N
Or more efficiently, one can check that b is orthogonal with respect to the cokernel’s basis vectors.



Concretely: Let’s determine compatibility conditions for:

xl—XQ+3X3=b1, —x1+2XQ—4X3=b2, 2X1+3XZ+X3=[)3, x1+2X3=b4.
1 o1 3]
2 -1 2 -4
By FH, need to solve: A"y = 0 where A = 5
0o 2

1 -1 21 1
AT=| -1 2 30 -1 0151 |
3 412 0

ya,y3 are free. yo = =5y3 —ysandy, = —7y3 —2ys  or

-

Yy = <_7y3 - 2)’4, - 5y3 — V4, V3, y4> = )/'3(—77_5, 170) +y4(_29_170> 1)

Therefore, by the Fredholm alternative we need to find vectors which are orthogonal to this space.

Dotting b with each basis vectors gives compatibility conditions: —7b; — 5bh> + b3 = 0 and —2b; — by + b4 = 0.

If you were to do the Gaussian elimination on [A | Z}, you would find the same compatibility conditions.

0 Recharacterizing A: Let b = A¥ € R”. Since kernel and coimage of A are orthogonal complements in domain R”,

we can uniquely decompose X = W + Z, where W € coimgA, while Z € kerA.
. - . - - — - —
And since AZ = 0, itmustbethat b = AX = A(W+Z2) = Aw.

Therefore, multiplying an X in the domain by A can be seen as 1st projecting X onto the coimage (¥ — W), and

then mapping # to the imgA: AX = AW = b. This provides a 1-1 correspondence between imgA & coimgA.
Also, observe that if A has rank 7, then both imgA & coimgA are r-dimensional, albeit of different vector spaces.

Therefore:

mxn

Theorem: Multiplication by A" of rank r defines a one-to-one correspondence between
the r-dimensional subspaces img A < R™ and coimgA < R”. Moreover, if V1, ...,V , forms a basis of coimg A,

then their images under A: AV, ..., AV, form a basis for img A.



Theorem: A compatible AY = b with b e img A = (coker A)* has a unique solution W € coimg A satisfying Aw = b.
This general solution is X = W + Z, where Z € ker A. The particular solution W € coimg A has the smallest Euclidean

norm of all possible solutions: [W| < |¥| whenever AY = b.
Partial Proof: Does b < imgA corresponds to a unique W € coimgA?
Indeed, if w,w € coimgA satisfy b = Aw = Aw, then A(w —w) = 0, and hence w — w € kerA.

g "~y
But, since kernel & coimage are orthogonal complements, the only vector that belongs to both is 0, and hence W = W.

- -

And, since the coimage & kernel are orthogonal subspaces, the norm of a general solution (X = W + Z) is:
2 2 2 2 2 2 2 . I =
|?| = |7v’+?| = |7v’| +27v’-?+|7 = |7v’| +|?| > |v_v) , with equality iff Z = 0. [

Example: Find the orthogonal complement W* of the subspace W — R? spanned by

0 -2 -1
V= 1 , Vo = 3 |,Vs = 2 |. Whatis the dimension of W*-?
-1 1

Observe that 2v3 — V, = V. However, by observation V5 is linearly independent from V,: Wis 2D.
Therefore, since we are in R?, the orthogonal complement #* must be 1D.
In particular, we need W = (w1, wa, w3 ) such that (W, V) = (W, V3) = 0.
Or: 2w + 3wy + w3 = 0 and —w; + 2w, = 0.
From the second equation: w; = 2w, and from the first equation:
—20@w2) + 3w+ w3z = w3 —wy = 0orwy = wa.
So the orthogonal complement is spanned by w = (2,1,1). Checking our work, one sees that (W, V,) = (W, V3) = 0.

For the homework, given the bases for two subspaces, how can we determine if these subspaces are orthogonal?



