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4.4 Orthogonal Projections and Subspaces

Orthogonal Projection

Definition: A vector z  V is said to be orthogonal to a subspace W  V if it is orthogonal

to every vector in W, so  z ,w  0 for all w  W.

Definition: The orthogonal projection of u onto a subspace W is the element w  W

that makes the difference z  u  w  u  ProjWu orthogonal to W.

(used in least squares minimization and data fitting)

Theorem: Let u 1, , u n be an orthonormal basis for the subspace W  V.

Then the orthogonal projection of v  V onto w  W is given by

w  c1u 1 cnu n, where c i  v , u i , i  1, ,n.

Definition: The orthogonal projection of u onto a subspace W is the element w  W

that makes the difference z  u  w  u  ProjWu orthogonal to W.

(used in least squares minimization and data fitting)

Theorem: Let u 1, , u n be an orthonormal basis for the subspace W  V.

Then the orthogonal projection of v  V onto w  W is given by

w  c1u 1 cnu n, where c i  v , u i , i  1, ,n. 

Proof: Since u 1, , u n form a basis of the subspace, the orthogonal projection element w must be

some linear combination thereof: w  c1u 1 cnu n.

Definition above requires the difference z  v  w be orthogonal to W, and, as noted above,



it suffices to check orthogonality to the basis vectors. By our orthonormality assumption:

0   z , u i   v  w, u i   v  c1u 1 cnu n, u i 

 v , u i   c1u 1, u i  cnu n, u i   v , u i   c i.

The coefficients c i  v , u i  of the orthogonal projection w are therefore uniquely prescribed by

the orthogonality requirement, which thereby proves its uniqueness. 

More generally, with an orthogonal basis, the previous argument will show the orthogonal projection

of v onto W is given by: w  a1 v 1 an v n, where ai 
v ,v i

v i
2 , i  1, ,n.

Concretely: Consider the plane W  R3 spanned by orthogonal vectors v 1  1,2,1 and v 2  1,1,1.

According to the formula above, the orthogonal projection of v  1,0,0 onto W is

w 
v ,v 1

v 1
2 v 1 

v ,v 2

v 2
2 v 2  1

6 1,2,1 
1
3 1,1,1 

1
2 , 0,

1
2 .

Alternatively, we can replace v 1, v 2 by the orthonormal basis: u 1 
v 1

v 1
 1

6
, 2

6
, 1

6
and

u 2 
v 2

v 2
 1

3
, 1

3
, 1

3
.

Then, using the orthonormal version , w  v , u 1 u 1  v , u 2 u 2

 1

6

1

6
, 2

6
, 1

6
 1
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1

3
, 1

3
, 1

3
 1

2 , 0,
1
2 .

The orthogonal projection formula includes the orthogonal basis formula as a special case.

Orthogonal Subspaces
Subspaces can be orthogonal.

VV

Definition: Two subspaces W,Z  V are called orthogonal subspaces if every vector in W is orthogonal to every vector in Z.



Lemma: If w1, ,wk span W, and z 1, , z l span Z, then W and Z are orthogonal subspaces iff w i, z j   0

for all i  1, ,k and j  1, , l.

So WZ iff every basis element of W is orthogonal to every basis element of Z.

Example: Let W be the span of w1  1,2,0,1T and w2  3,5,2,1T, and let Z be the span of z 1  3,2,0, 1T and

z 2  1,0,1,1T. Are W and Z are orthogonal?

You can check that w1  z 1  w1  z 2  w2  z 1  w2  z 2  0.

Therefore, W and Z are orthogonal 2D subspaces of R4 with respect to Euclidean dot product.

Definition: The orthogonal complement of a subspace W  V, denoted W, is defined as the set of all vectors that are

orthogonal to W: so W  v  V | v ,w  0 for all w  W . (depends upon choice of inner product)

Concretely: Let W  t, 2t, 3tT : t  R be the line (1D subspace) in the direction of w1  1,2,3T  R3.

Under dot product, its orthogonal complement W  w1

is the plane passing through the origin having normal vector w1.

In other words, z  x,y, zT  W iff z  w1  x  2y  3z  0. Thus, W is characterized as the solution space

of the homogeneous linear equation above, or equivalently, the kernel of A  w1
T
 1 2 3 .

We can write the general solution in the form: z  ??

2y  3z

y

z

 y

2

1

0

 z

3

0

1

 y z 1  z z 2,

where y, z are the free variables. So z 1  2,1,0T and z 2  3,0,1T form a (non-orthogonal) basis for W.

Proposition: Suppose that W  V is a finite dimensional subspace of an inner product space.

Then every vector v  V can be uniquely decomposed into v  w  z , where w  W and z  W.

Proof: Let w  W be orthogonal projection of v onto W. Then, z  v  w is, by definition, orthogonal to W and

hence belongs to W.

Note that z can be viewed as orthogonal projection of v onto complementary subspace W (if it’s finite dimensional).

Now we just need uniqueness. If we are given two such decompositions, v  w  z  w

 z


, then w  w


 z

  z .



The left-hand side of this equation lies in W, while the right-hand side belongs to W.

But, as we already noted, the only vector that belongs to both W and W is the zero vector.

Thus, w  w

 0  z

  z , so w  w

and z  z


, which proves uniqueness. 

Proposition: IfW  V is a subspace with dimW  n and dimV  m, then dimW  m  n.

Proposition: IfW is a finite dimensional subspace of an inner product space, then W  W.

Orthogonality of the Fundamental Matrix Subspaces and the Fredholm Alternative

Theorem: Let A be a real m  n matrix. Then A’s kernel and coimage are orthogonal complements as subspaces of Rn

under the dot product. Also, A’s cokernel and image are orthogonal complements in Rm:

kerA  coimgA  Rn, coker A  imgA  Rm.

Proof: x  Rn lies in kerA iff Ax  0. Observe, the i th entry of Ax equals product of i th row r i
T
of A and x .

But r i
T
x  r i  x  0, iff x is orthogonal to r i. Therefore, x  kerA iff x is orthogonal to all rows of A.

Since these rows span coimgA, this is equivalent to x lying in coimgA, which proves the first statement.

Orthogonality of the image and cokernel follows by the same argument applied to AT. 

Therefore (given the rank/nullity thm):

Theorem (Fredholm Alternative, "FH"): Ax  b has a solution iff b is orthogonal to the cokernel of A.

Indeed, since A’s cokernel and image are orthogonal compliments, and dimcokerA  dimimA  m,

b  0 must either be in the cokernel or the image. If b is in the image, by the previous theorem it is orthogonal to the cokernel.

If it is in the cokernel, it is orthogonal to the image, and the system has no solution.

Thus, the compatibility conditions for Ax  b are: y  b  0 for every y such that AT y  0.

Or more efficiently, one can check that b is orthogonal with respect to the cokernel’s basis vectors.



Concretely: Let’s determine compatibility conditions for:

x1  x2  3x3  b1,  x1  2x2  4x3  b2, 2x1  3x2  x3  b3, x1  2x3  b4.

By FH, need to solve: AT y  0 where A 

1 1 3

1 2 4

2 3 1

1 0 2

.

AT 

1 1 2 1

1 2 3 0

3 4 1 2



1 0 7 2

0 1 5 1

0 0 0 0

,

y4,y3 are free. y2  5y3  y4 and y1  7y3  2y4 or

y  7y3  2y4,  5y3  y4, y3, y4  y37,5,1,0  y42,1,0,1.

Therefore, by the Fredholm alternative we need to find vectors which are orthogonal to this space.

Dotting b with each basis vectors gives compatibility conditions: 7b1  5b2  b3  0 and 2b1  b2  b4  0.

If you were to do the Gaussian elimination on A | b , you would find the same compatibility conditions.

Recharacterizing A: Let b  Ax  Rm. Since kernel and coimage of A are orthogonal complements in domain Rn,

we can uniquely decompose x  w  z , where w  coimgA, while z  kerA.

And since A z  0, it must be that b  Ax  Aw  z   Aw.

Therefore, multiplying an x in the domain by A can be seen as 1st projecting x onto the coimage (x  w), and

then mapping w to the imgA: Ax  Aw  b . This provides a 1-1 correspondence between imgA & coimgA.

Also, observe that if A has rank r, then both imgA & coimgA are r-dimensional, albeit of different vector spaces.

Therefore:

Theorem: Multiplication by Amn of rank r defines a one-to-one correspondence between

the r-dimensional subspaces imgA  Rm and coimgA  Rn. Moreover, if v 1, , v r forms a basis of coimgA,

then their images under A: Av 1, ,Av r form a basis for imgA.



Theorem: A compatible Ax  b with b  imgA  coker A has a unique solution w  coimgA satisfying Aw  b .

This general solution is x  w  z , where z  kerA. The particular solution w  coimgA has the smallest Euclidean

norm of all possible solutions: w  x whenever Ax  b .

Partial Proof: Does b  imgA corresponds to a unique w  coimgA?

Indeed, if w,w  coimgA satisfy b  Aw  Aw, then Aw  w  0, and hence w  w  kerA.

But, since kernel & coimage are orthogonal complements, the only vector that belongs to both is 0, and hence w  w.

And, since the coimage & kernel are orthogonal subspaces, the norm of a general solution ( x  w  z ) is:

x
2
 w  z

2
 w

2
 2w  z  z

2
 w

2
 z

2  w
2
, with equality iff z  0. 

Example: Find the orthogonal complement W of the subspace W  3 spanned by

v 1 

0

1

1

, v 2 

2

3

1

, v 3 

1

2

0

. What is the dimension of W?

Observe that 2v 3  v 2  v 1. However, by observation v 3 is linearly independent from v 2: W is 2D.

Therefore, since we are in R3, the orthogonal complement W must be 1D.

In particular, we need w  w1, w2, w3 such that w, v 2   w, v 3   0.

Or: 2w1  3w2  w3  0 and w1  2w2  0.

From the second equation: w1  2w2, and from the first equation:

 22w2  3w2  w3  w3  w2  0 or w2  w3.

So the orthogonal complement is spanned by w  2,1,1. Checking our work, one sees that w, v 2   w, v 3   0.

For the homework, given the bases for two subspaces, how can we determine if these subspaces are orthogonal?


