Applied Linear Algebra

4.3 Orthogonal Matrices

Definition: A square matrix \mathbf{Q} is called an orthogonal matrix if it satisfies $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{Q} \mathbf{Q}^{T}=\mathbf{I}$.

In particular, orthogonality implies $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$.

Proposition: A matrix \mathbf{Q} is orthogonal iff its columns form an orthonormal basis w/respect to Euclidean dot product on \mathbb{R}^{n}.

Proof: Let $\vec{u}_{1}, \ldots, \vec{u}_{n}$ be the columns of \mathbf{Q}. Then, $\vec{u}_{1}^{T}, \ldots, \vec{u}_{n}^{T}$ are the rows of the transposed matrix \mathbf{Q}^{T}.

The (i, j) entry of the product $\mathbf{Q}^{T} \mathbf{Q}$ is given as the product of: the $i^{\text {th }}$ row of \mathbf{Q}^{T}, and the $j^{\text {th }}$ column of \mathbf{Q}.

Thus, the orthogonality requirement $(*)$ implies $\vec{u}_{i} \cdot \vec{u}_{j}=u_{i}^{T} \vec{u}_{j}= \begin{cases}1, & i=j, \\ 0, & i \neq j,\end{cases}$
which are precisely the conditions for \vec{u}_{i} to form an orthonormal basis.

Concretely: Let's characterize all orthogonal $\mathbf{Q}^{2 \times 2}$.

A 2×2 matrix $\mathbf{Q}=\left[\begin{array}{ll}\vec{x}_{1} & \vec{x}_{2}\end{array}\right]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is orthogonal iff its columns \vec{x}_{1}, \vec{x}_{2}, form an orthonormal basis. Equivalently, the requirement $\mathbf{Q}^{T} \mathbf{Q}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a^{2}+c^{2} & a b+c d \\ a b+c d & b^{2}+d^{2}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathbf{I}$, implies that its entries must satisfy the algebraic equations:

$$
a^{2}+c^{2}=1, \quad a b+c d=0, \quad b^{2}+d^{2}=1
$$

The first and last equations say that vectors (a, c) and (b, d) lie on the unit circle.

Therefore: $a=\cos \theta, \quad c=\sin \theta, \quad b=\cos \theta_{2}, \quad d=\sin \theta_{2}$, for some θ, θ_{2}.

The remaining orthogonality condition above is now:

$$
0=a b+c d=\cos \theta \cos \theta_{2}+\sin \theta \sin \theta_{2}=\cos \left(\theta-\theta_{2}\right) .
$$

It implies θ and θ_{2} differ by a right angle: $\theta_{2}=\theta \pm \frac{\pi}{2}$.

Recharacterizing b, d in terms of θ, we have two cases:

$$
b=-\sin \theta, \quad d=\cos \theta, \quad \text { or } \quad b=\sin \theta, \quad d=-\cos \theta .
$$

Therefore, every 2×2 orthogonal matrix has the form:

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \tag{*}\\
\sin \theta & \cos \theta
\end{array}\right] \text { or }\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right] .
$$

Lemma: An orthogonal \mathbf{Q} has $|\mathbf{Q}|= \pm 1$.

Proof: Taking the determinant of (*), and using the facts $|\mathbf{A B}|=|\mathbf{A} \| \mathbf{B}|$ and $\left|\mathbf{A}^{T}\right|=|\mathbf{A}|$,

$$
\text { we have } 1=|\mathbf{I}|=\left|\mathbf{Q}^{T} \mathbf{Q}\right|=\left|\mathbf{Q}^{T}\right||\mathbf{Q}|=|\mathbf{Q}|^{2} .
$$

Definition: An orthogonal matrix is called proper or special if it has determinant +1 .
An improper orthogonal matrix has determinant -1 .

Proposition: The product of two orthogonal matrices is also orthogonal.

Proof: Let: $\mathbf{Q}_{1}^{T} \mathbf{Q}_{1}=\mathbf{I}=\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}$.

Want to show: $\mathbf{Q}_{1} \mathbf{Q}_{2}$ is orthogonal.

Observe that $\left(\mathbf{Q}_{1} \mathbf{Q}_{2}\right)^{T}\left(\mathbf{Q}_{1} \mathbf{Q}_{2}\right)$

$$
=\mathbf{Q}_{2}^{T}\left(\mathbf{Q}_{1}^{T} \mathbf{Q}_{1}\right) \mathbf{Q}_{2}=\mathbf{Q}_{2}^{T} \mathbf{Q}_{2}=\mathbf{I} .
$$

Example: True or false: a) If \mathbf{Q} is an improper 2×2 orthogonal matrix, then $\mathbf{Q}^{2}=\mathbf{I}$.

From (*), $\quad|\mathbf{Q}|=\left|\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right|=-\cos ^{2} \theta-\sin ^{2} \theta=-1$. The other form gives $|\mathbf{Q}|=1$.

Therefore all 2×2 improper orthogonal matrices take the form: $\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]$.

And $\mathbf{Q}^{2}=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ \sin \theta & -\cos \theta\end{array}\right]^{2}=\left[\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta+\sin ^{2} \theta\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\mathbf{I} . \quad \vee$

So, true.

The QR Factorization

Now that we know about orthogonal matrices, we can recharacterize the Gram-Schmidt procedure as matrix factorization.

Let $\vec{w}_{1}, \ldots, \vec{w}_{n}$ be a basis of \mathbb{R}^{n}, and let $\vec{u}_{1}, \ldots, \vec{u}_{n}$ be the corresponding orthonormal basis that results from the Gram-Schmidt process.

Assemble nonsingular $n \times n$ matrices: $\mathbf{A}=\left[\begin{array}{lll}\vec{w}_{1} & \ldots & \vec{w}_{n}\end{array}\right], \quad \mathbf{Q}=\left[\begin{array}{lll}\vec{u}_{1} & \ldots & \vec{u}_{n}\end{array}\right]$.
Since the \vec{u}_{i} form an orthonormal basis, \mathbf{Q} is orthogonal.

Recall the Gram-Schmidt equation (see previous section):

$$
\begin{aligned}
& \vec{w}_{1}=r_{11} \vec{u}_{1}, \\
& \vec{w}_{2}=r_{12} \vec{u}_{1}+r_{22} \vec{u}_{2}, \\
& \vec{w}_{3}=r_{13} \vec{u}_{1}+r_{23} \vec{u}_{2}+r_{33} \vec{u}_{3}, \\
& \vdots \quad \vdots \quad \vdots \quad \ddots \\
& \vec{w}_{n}=r_{1 n} \vec{u}_{1}+r_{2 n} \vec{u}_{2}+\ldots+r_{n n} \vec{u}_{n}, \quad(* *) \\
& \text { where } r_{i j}:=\left\langle\vec{w}_{j}, \vec{u}_{i}\right\rangle \text {. }
\end{aligned}
$$

Also, recall the matrix multiplication formula, if $\mathbf{R}=\left[\begin{array}{lll}\vec{r}_{1} & \ldots & \vec{r}_{n}\end{array}\right]$, then: $\mathbf{Q R}=\left[\begin{array}{lll}\mathbf{Q} \vec{r}_{1} & \ldots & \mathbf{Q} \vec{r}_{k}\end{array}\right]$.

The Gram-Schmidt equation can now be recast into an equivalent matrix form:
$\mathbf{A}=\mathbf{Q R}$, where $\mathbf{R}=:\left[\begin{array}{lll}\vec{r}_{1} & \ldots & \vec{r}_{n}\end{array}\right]=\left[\begin{array}{cccc}r_{11} & r_{12} & \ldots & r_{1 n} \\ 0 & r_{22} & \ldots & r_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & r_{n n}\end{array}\right] . \quad$ (check this!)

Only requirement on \mathbf{A} is that its columns form a basis of \mathbb{R}^{n} (nonsingular).

Theorem: Every nonsingular \mathbf{A} can be factored, $\mathbf{A}=\mathbf{Q R}$, into the product of an orthogonal matrix \mathbf{Q} and an upper triangular matrix \mathbf{R}. The factorization is unique if \mathbf{R} has positive diagonal entries.

There is a more efficient algorithm to calculate the $\mathbf{Q R}$ factorization for \vec{w}_{i}. The algorithm will rely on the following facts:
(1) Given an orthonormal basis \vec{u}_{i}, recall from a previous theorem that: $|\vec{w}|=\sqrt{\sum_{i=1}^{n}\left\langle\vec{w}, \vec{u}_{i}\right\rangle^{2}}$.
(2) Also, recall we defined $r_{i j}:=\left\langle\vec{w}_{j}, \vec{u}_{i}\right\rangle$.
(3) Therefore, we have: $\left|\vec{w}_{j}\right|^{2}=r_{1 j}^{2}+\ldots+r_{j-1, j}^{2}+r_{j j}^{2}$ or $r_{j j}=\sqrt{\left|\vec{w}_{j}\right|^{2}-\left(r_{1 j}^{2}+\ldots+r_{j-1, j}^{2}\right)}$.
(4) We see from $(* *)$ that each \vec{u}_{i} can be solved for: $\vec{u}_{n}=\frac{\vec{w}_{n}-\left(r_{1 n} \vec{u}_{1}+r_{2 n} \vec{u}_{2}+\ldots+r_{(n-1) n} \vec{u}_{n-1}\right)}{r_{m n}}$.

Let's learn the algorithm through the following example:
Example: Find the $\mathbf{Q R}$ factorization of $\mathbf{A}=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 1 & 1 \\ -1 & 1 & 3\end{array}\right]$.

So the column vectors here are: $\vec{w}_{1}:=(0,-1,-1), \vec{w}_{2}=(1,1,1)$, and $\vec{w}_{3}=(2,1,3)$.

In the end, we expect something of the form:
$\vec{w}_{1}=r_{11} \vec{u}_{1}$,
$\vec{w}_{2}=r_{12} \vec{u}_{1}+r_{22} \vec{u}_{2}$,
$\vec{w}_{3}=r_{13} \vec{u}_{1}+r_{23} \vec{u}_{2}+r_{33} \vec{u}_{3}$.

The first step is to normalize $\vec{w}_{1}: r_{11}=\left|\vec{w}_{1}\right|=\sqrt{1^{2}+1^{2}}=\sqrt{2}$, so $\vec{u}_{1}=\frac{\vec{w}_{1}}{\left|\vec{w}_{1}\right|}=\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$.

From (2) above, we compute: $r_{12}=\left\langle\vec{w}_{2}, \vec{u}_{1}\right\rangle=\left\langle(1,1,1),\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)\right\rangle=0-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}$.

From (3): $r_{22}=\sqrt{\left|\vec{w}_{2}\right|^{2}-r_{12}^{2}}=\sqrt{\left(1^{2}+1^{2}+1^{2}\right)-2}=1$.

Therefore, from (4): $\vec{u}_{2}=\frac{\vec{w}_{2}-r_{12} \vec{u}_{1}}{r_{22}}=\frac{(1,1,1)-(-\sqrt{2})\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)}{1}=(1,0,0)$.

Working on the next vector, from (2): $r_{13}=\left\langle\vec{w}_{3}, \vec{u}_{1}\right\rangle=\left\langle(2,1,3),\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)\right\rangle=0-\frac{1}{\sqrt{2}}-\frac{3}{\sqrt{2}}=-2 \sqrt{2}$.

Also: $r_{23}=\left\langle\vec{w}_{3}, \vec{u}_{2}\right\rangle=\langle(2,1,3),(1,0,0)\rangle=2$.

From (3): $r_{33}=\sqrt{\left|\vec{w}_{3}\right|^{2}-r_{13}^{2}-r_{23}^{2}}=\sqrt{\left(2^{2}+1^{2}+3^{2}\right)-8-4}=\sqrt{2}$.

Therefore, from (4): $\vec{u}_{3}=\frac{\vec{w}_{3}-r_{13} \vec{u}_{1}-r_{23} \vec{u}_{2}}{r_{33}}=\frac{(2,1,3)-(-2 \sqrt{2})\left(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)-2(1,0,0)}{\sqrt{2}}=\left(0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

So: $\mathbf{Q}=\left[\begin{array}{lll}\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}\end{array}\right]$ and $\mathbf{R}=\left[\begin{array}{ccc}r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33}\end{array}\right]=\left[\begin{array}{ccc}\sqrt{2} & -\sqrt{2} & -2 \sqrt{2} \\ 0 & 1 & 2 \\ 0 & 0 & \sqrt{2}\end{array}\right]$.

Checking my work: $\quad \mathbf{Q R}=\left[\begin{array}{ccc}0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{ccc}\sqrt{2} & -\sqrt{2} & -2 \sqrt{2} \\ 0 & 1 & 2 \\ 0 & 0 & \sqrt{2}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 1 & 1 \\ -1 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}\vec{w}_{1} & \vec{w}_{2} & \vec{w}_{3}\end{array}\right] . \quad \checkmark$

