Instructor: Jodin Morey moreyjc@umn.edu

4.3 Orthogonal Matrices

Definition: A square matrix **Q** is called an *orthogonal matrix* if it satisfies $\mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \mathbf{I}$. (*)

In particular, orthogonality implies $\mathbf{Q}^{-1} = \mathbf{Q}^T$.

Proposition: A matrix **Q** is orthogonal iff its columns form an orthonormal basis w/respect to Euclidean dot product on \mathbb{R}^n .

Proof: Let $\vec{u}_1, \ldots, \vec{u}_n$ be the columns of **Q**. Then, $\vec{u}_1^T, \ldots, \vec{u}_n^T$ are the rows of the transposed matrix **Q**^{*T*}.

The (i,j) entry of the product $\mathbf{Q}^T \mathbf{Q}$ is given as the product of: the i^{th} row of \mathbf{Q}^T , and the j^{th} column of \mathbf{Q} .

Thus, the orthogonality requirement (*) implies $\vec{u}_i \cdot \vec{u}_j = u_i^T \vec{u}_j = \begin{cases} 1, & i = j, \\ 0, & i \neq j, \end{cases}$

which are precisely the conditions for \vec{u}_i to form an orthonormal basis.

Concretely: Let's characterize *all* orthogonal $\mathbf{Q}^{2\times 2}$.

A 2 × 2 matrix $\mathbf{Q} = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is orthogonal **iff** its columns \vec{x}_1, \vec{x}_2 , form an orthonormal basis. Equivalently, the requirement $\mathbf{Q}^T \mathbf{Q} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}$, implies that its entries must satisfy the algebraic equations:

 $a^2 + c^2 = 1$, ab + cd = 0, $b^2 + d^2 = 1$.

The first and last equations say that vectors (a, c) and (b, d) lie on the unit circle.

Therefore: $a = \cos \theta$, $c = \sin \theta$, $b = \cos \theta_2$, $d = \sin \theta_2$, for some θ, θ_2 .

The remaining orthogonality condition above is now:

 $0 = ab + cd = \cos\theta\cos\theta_2 + \sin\theta\sin\theta_2 = \cos(\theta - \theta_2).$

It implies θ and θ_2 differ by a right angle: $\theta_2 = \theta \pm \frac{\pi}{2}$.

Recharacterizing b, d in terms of θ , we have two cases: $b = -\sin\theta, d = \cos\theta, \text{ or } b = \sin\theta, d = -\cos\theta.$

Therefore, every 2×2 orthogonal matrix has the form:

 $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \text{ or } \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}. \quad (*)$

Lemma: An orthogonal **Q** has $|\mathbf{Q}| = \pm 1$.

Proof: Taking the determinant of (*), and using the facts $|\mathbf{AB}| = |\mathbf{A}||\mathbf{B}|$ and $|\mathbf{A}^{T}| = |\mathbf{A}|$,

we have $1 = |\mathbf{I}| = |\mathbf{Q}^T \mathbf{Q}| = |\mathbf{Q}^T||\mathbf{Q}| = |\mathbf{Q}|^2$.

Definition: An orthogonal matrix is called *proper* or *special* if it has determinant +1. An *improper* orthogonal matrix has determinant -1.

Proposition: The product of two orthogonal matrices is also orthogonal.

Proof: Let: $\mathbf{Q}_1^T \mathbf{Q}_1 = \mathbf{I} = \mathbf{Q}_2^T \mathbf{Q}_2$.

Want to show: $\mathbf{Q}_1 \mathbf{Q}_2$ is orthogonal.

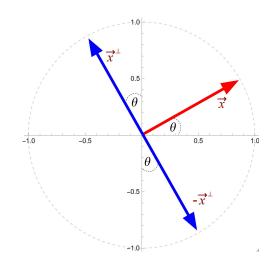
Observe that $(\mathbf{Q}_1\mathbf{Q}_2)^T(\mathbf{Q}_1\mathbf{Q}_2)$

 $= \mathbf{Q}_2^T (\mathbf{Q}_1^T \mathbf{Q}_1) \mathbf{Q}_2 = \mathbf{Q}_2^T \mathbf{Q}_2 = \mathbf{I}.$

Example: True or false: a) If **Q** is an improper 2×2 orthogonal matrix, then $\mathbf{Q}^2 = \mathbf{I}$.

From (*), $|\mathbf{Q}| = \begin{vmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{vmatrix} = -\cos^2\theta - \sin^2\theta = -1$. The other form gives $|\mathbf{Q}| = 1$.

Therefore all 2 × 2 improper orthogonal matrices take the form: $\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$.



And
$$\mathbf{Q}^2 = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}^2 = \begin{bmatrix} \cos^2\theta + \sin^2\theta & 0 \\ 0 & \cos^2\theta + \sin^2\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{I}. \quad \checkmark$$

So, true.

The QR Factorization

Now that we know about orthogonal matrices, we can recharacterize the Gram-Schmidt procedure as matrix factorization.

Let $\vec{w}_1, \ldots, \vec{w}_n$ be a basis of \mathbb{R}^n , and let $\vec{u}_1, \ldots, \vec{u}_n$ be the corresponding orthonormal basis that results from the Gram-Schmidt process.

Assemble nonsingular $n \times n$ matrices: $\mathbf{A} = \begin{bmatrix} \vec{w}_1 & \dots & \vec{w}_n \end{bmatrix}, \quad \mathbf{Q} = \begin{bmatrix} \vec{u}_1 & \dots & \vec{u}_n \end{bmatrix}$

Since the \vec{u}_i form an orthonormal basis, **Q** is orthogonal.

Recall the Gram-Schmidt equation (see previous section):

$$\begin{split} \vec{w}_{1} &= r_{11}\vec{u}_{1}, \\ \vec{w}_{2} &= r_{12}\vec{u}_{1} + r_{22}\vec{u}_{2}, \\ \vec{w}_{3} &= r_{13}\vec{u}_{1} + r_{23}\vec{u}_{2} + r_{33}\vec{u}_{3}, \\ \vdots &\vdots &\vdots &\ddots \\ \vec{w}_{n} &= r_{1n}\vec{u}_{1} + r_{2n}\vec{u}_{2} + \dots + r_{nn}\vec{u}_{n}, \quad (* *) \\ \text{where } r_{ii} &:= \langle \vec{w}_{i}, \vec{u}_{i} \rangle. \end{split}$$

Also, recall the matrix multiplication formula, if $\mathbf{R} = \begin{bmatrix} \vec{r}_1 & \dots & \vec{r}_n \end{bmatrix}$, then: $\mathbf{Q}\mathbf{R} = \begin{bmatrix} \mathbf{Q}\vec{r}_1 & \dots & \mathbf{Q}\vec{r}_k \end{bmatrix}$.

The Gram-Schmidt equation can now be recast into an equivalent matrix form:

$$\mathbf{A} = \mathbf{Q}\mathbf{R}, \text{ where } \mathbf{R} = : \begin{bmatrix} \vec{r}_1 & \dots & \vec{r}_n \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ 0 & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & r_{nn} \end{bmatrix}. \quad (\text{check this!})$$

Only requirement on A is that its columns form a basis of \mathbb{R}^n (nonsingular).

Theorem: Every nonsingular **A** can be factored, $\mathbf{A} = \mathbf{Q}\mathbf{R}$, into the product of an orthogonal matrix **Q** and an upper triangular matrix **R**. The factorization is unique if **R** has positive diagonal entries.

There is a more efficient algorithm to calculate the **QR** factorization for \vec{w}_i . The algorithm will rely on the following facts:

- (1) Given an orthonormal basis \vec{u}_i , recall from a previous theorem that: $|\vec{w}| = \sqrt{\sum_{i=1}^n \langle \vec{w}, \vec{u}_i \rangle^2}$.
- (2) Also, recall we defined $r_{ij} := \langle \vec{w}_j, \vec{u}_i \rangle$.
- (3) Therefore, we have: $\left|\vec{w}_{j}\right|^{2} = r_{1j}^{2} + \ldots + r_{j-1,j}^{2} + r_{jj}^{2}$ or $r_{jj} = \sqrt{\left|\vec{w}_{j}\right|^{2} (r_{1j}^{2} + \ldots + r_{j-1,j}^{2})}$.
- (4) We see from (* *) that each \vec{u}_i can be solved for: $\vec{u}_n = \frac{\vec{w}_n (r_{1n}\vec{u}_1 + r_{2n}\vec{u}_2 + \dots + r_{(n-1)n}\vec{u}_{n-1})}{r_{nn}}$.

Let's learn the algorithm through the following example:

Example: Find the **QR** factorization of $\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 1 & 1 \\ -1 & 1 & 3 \end{bmatrix}$.

So the column vectors here are: $\vec{w}_1 := (0, -1, -1), \ \vec{w}_2 = (1, 1, 1), \ \text{and} \ \vec{w}_3 = (2, 1, 3).$

In the end, we expect something of the form:

$$\vec{w}_1 = r_{11}\vec{u}_1,$$

$$\vec{w}_2 = r_{12}\vec{u}_1 + r_{22}\vec{u}_2,$$

$$\vec{w}_3 = r_{13}\vec{u}_1 + r_{23}\vec{u}_2 + r_{33}\vec{u}_3.$$
 (* * *)

The first step is to normalize \vec{w}_1 : $r_{11} = |\vec{w}_1| = \sqrt{1^2 + 1^2} = \sqrt{2}$, so $\vec{u}_1 = \frac{\vec{w}_1}{|\vec{w}_1|} = \left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$.

From (2) above, we compute: $r_{12} = \langle \vec{w}_2, \vec{u}_1 \rangle = \left\langle (1, 1, 1), \left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \right\rangle = 0 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = -\sqrt{2}$.

From (3):
$$r_{22} = \sqrt{\left|\vec{w}_2\right|^2 - r_{12}^2} = \sqrt{(1^2 + 1^2 + 1^2) - 2} = 1.$$

Therefore, from (4): $\vec{u}_2 = \frac{\vec{w}_2 - r_{12}\vec{u}_1}{r_{22}} = \frac{(1,1,1) - (-\sqrt{2})(0,-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})}{1} = (1,0,0).$

Working on the next vector, from (2): $r_{13} = \langle \vec{w}_3, \vec{u}_1 \rangle = \langle (2, 1, 3), (0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}) \rangle = 0 - \frac{1}{\sqrt{2}} - \frac{3}{\sqrt{2}} = -2\sqrt{2}.$

Also:
$$r_{23} = \langle \vec{w}_3, \vec{u}_2 \rangle = \langle (2, 1, 3), (1, 0, 0) \rangle = 2$$
.

From (3): $r_{33} = \sqrt{\left|\vec{w}_3\right|^2 - r_{13}^2 - r_{23}^2} = \sqrt{(2^2 + 1^2 + 3^2) - 8 - 4} = \sqrt{2}.$

Therefore, from (4): $\vec{u}_3 = \frac{\vec{w}_3 - r_{13}\vec{u}_1 - r_{23}\vec{u}_2}{r_{33}} = \frac{(2,1,3) - (-2\sqrt{2})\left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) - 2(1,0,0)}{\sqrt{2}} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right).$

So:
$$\mathbf{Q} = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$$
 and $\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} = \begin{bmatrix} \sqrt{2} & -\sqrt{2} & -2\sqrt{2} \\ 0 & 1 & 2 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$.
Checking my work: $\mathbf{QR} = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & -\sqrt{2} & -2\sqrt{2} \\ 0 & 1 & 2 \\ 0 & 0 & \sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 1 & 1 \\ -1 & 1 & 3 \end{bmatrix} = \begin{bmatrix} \vec{w}_1 & \vec{w}_2 & \vec{w}_3 \end{bmatrix}$.