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4.3 Orthogonal Matrices

Definition: A square matrix Q is called an orthogonal matrix if it satisfies QTQ  QQT  I. 

In particular, orthogonality implies Q1  QT.

Proposition: A matrix Q is orthogonal iff its columns form an orthonormal basis w/respect to Euclidean dot product on Rn.

Proof: Let u 1, , u n be the columns of Q. Then, u 1
T
, , u n

T
are the rows of the transposed matrix QT.

The i, j entry of the product QTQ is given as the product of: the i th row of QT, and the j th column of Q.

Thus, the orthogonality requirement  implies u i  u j  ui
T u j 

1, i  j,

0, i  j,

which are precisely the conditions for u i to form an orthonormal basis. 

Concretely: Let’s characterize all orthogonal Q22.

A 2  2 matrix Q  x 1 x 2 
a b

c d
is orthogonal iff its columns x 1, x 2, form an orthonormal basis.

Equivalently, the requirement QTQ 
a c

b d

a b

c d


a2  c2 ab  cd

ab  cd b2  d2


1 0

0 1
 I,

implies that its entries must satisfy the algebraic equations:

a2  c2  1, ab  cd  0, b2  d2  1.

The first and last equations say that vectors a,c and b,d lie on the unit circle.

Therefore: a  cos, c  sin, b  cos2, d  sin2, for some ,2.



The remaining orthogonality condition above is now:

0  ab  cd  coscos2  sin sin2  cos  2.

It implies  and 2 differ by a right angle: 2    
2 .

Recharacterizing b,d in terms of , we have two cases:

b   sin, d  cos, or b  sin, d  cos.

Therefore, every 2  2 orthogonal matrix has the form:

cos  sin

sin cos
or

cos sin

sin cos
. 

Lemma: An orthogonal Q has |Q|  1.

Proof: Taking the determinant of , and using the facts |AB|  |A||B| and |AT |  |A|,

we have 1  |I|  |QTQ|  |QT ||Q|  |Q|2. 

Definition: An orthogonal matrix is called proper or special if it has determinant 1.

An improper orthogonal matrix has determinant 1.

Proposition: The product of two orthogonal matrices is also orthogonal.

Proof: Let: Q1
TQ1  I  Q2

TQ2.

Want to show: Q1Q2 is orthogonal.

Observe that Q1Q2
TQ1Q2

 Q2
TQ1

TQ1Q2  Q2
TQ2  I. 

Example: True or false: a) If Q is an improper 2  2 orthogonal matrix, then Q2  I.

From , |Q| 
cos sin

sin cos
  cos2  sin2  1. The other form gives |Q|  1.

Therefore all 2  2 improper orthogonal matrices take the form:
cos sin

sin cos
.



And Q2 
cos sin

sin cos

2


cos2  sin2 0

0 cos2  sin2


1 0

0 1
 I. 

So, true.

The QR Factorization

Now that we know about orthogonal matrices, we can recharacterize the Gram-Schmidt procedure as matrix factorization.

Let w1, ,wn be a basis of Rn, and let u 1, , u n be the corresponding orthonormal basis that results from the Gram-Schmidt
process.

Assemble nonsingular n  n matrices: A  w1  wn , Q  u 1  u n .

Since the u i form an orthonormal basis, Q is orthogonal.

Recall the Gram-Schmidt equation (see previous section):

w1  r11u 1,

w2  r12u 1  r22u 2,

w3  r13u 1  r23u 2  r33u 3,

   

wn  r1nu 1  r2nu 2 rnnu n,  

where rij : w j, u i .

Also, recall the matrix multiplication formula, if R  r 1  r n , then: QR  Q r 1  Q r k .

The Gram-Schmidt equation can now be recast into an equivalent matrix form:

A  QR, where R  : r 1  r n 

r11 r12  r1n

0 r22  r2n

   

0 0  rnn

. (check this!)

Only requirement on A is that its columns form a basis of Rn (nonsingular).

Theorem: Every nonsingular A can be factored, A  QR, into the product of an orthogonal matrix Q and an

upper triangular matrix R. The factorization is unique if R has positive diagonal entries.

There is a more efficient algorithm to calculate the QR factorization for w i. The algorithm will rely on the following facts:



1 Given an orthonormal basis u i, recall from a previous theorem that: w   i1
n

w, u i 
2
.

2 Also, recall we defined rij : w j, u i .

3 Therefore, we have: w j
2
 r1j

2 rj1,j
2  rjj2 or rjj  w j

2  r1j
2 rj1,j

2  .

4 We see from   that each u i can be solved for: u n 
wn r1n u 1r2n u 2rn1n u n1

rnn .

Let’s learn the algorithm through the following example:

Example: Find the QR factorization of A 

0 1 2

1 1 1

1 1 3

.

So the column vectors here are: w1 : 0,1,1, w2  1,1,1, and w3  2,1,3.

In the end, we expect something of the form:

w1  r11u 1,

w2  r12u 1  r22u 2,

w3  r13u 1  r23u 2  r33u 3.   

The first step is to normalize w1: r11  w1  12  12  2 , so u 1 
w1

w1
 0, 1

2
, 1

2
.

From 2 above, we compute: r12  w2, u 1   1,1,1, 0, 1

2
, 1

2
 0  1

2
 1

2
  2 .

From 3: r22  w2
2  r12

2  12  12  12  2  1.

Therefore, from 4: u 2 
w2r12 u 1

r22 
1,1,1  2 0, 1

2
, 1

2

1  1,0,0.

Working on the next vector, from 2: r13  w3, u 1   2,1,3, 0, 1

2
, 1

2
 0  1

2
 3

2
  2 2 .

Also: r23  w3, u 2   2,1,3, 1,0,0  2.

From 3: r33  w3
2  r13

2  r23
2  22  12  32  8  4  2 .

Therefore, from 4: u 3 
w3r13 u 1r23 u 2

r33 
2,1,3 2 2 0, 1

2
, 1

2
21,0,0

2
 0, 1

2
, 1

2
.



So: Q  u 1 u 2 u 3 and R 

r11 r12 r13

0 r22 r23

0 0 r33



2  2 2 2

0 1 2

0 0 2

.

Checking my work: QR 

0 1 0

 1

2
0  1

2

 1

2
0 1

2

2  2 2 2

0 1 2

0 0 2



0 1 2

1 1 1

1 1 3

 w1 w2 w3. 


