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4.2 The Gram-Schmidt Process
So, we’ve learned orthogonal and orthonormal bases are important. But how do we construct them?

Gram-Schmidt Process

Let W denote a finite dimensional inner product space. Assume some basis w1, ,wn ofW, where n  dimW.

Our goal is to construct an orthogonal basis v 1, , v n. So, set v 1 : w1. Note that v 1  0.

Next, working with w2, and insisting v 2, v 1   0, we arrange this by subtracting from w2 a suitable multiple of v 1:

v 2  w2  cv 1, where c is yet to be determined.

0  v 2, v 1   w2  cv 1, v 1   w2, v 1   cv 1, v 1   w2, v 1   c v 1
2
, requiring c 

w2,v 1

v 1
2 .

Therefore: v 2 : w2 
w2,v 1

v 1
2 v 1.

How does the linearity of v 1  w1 and w2 ensure that v 2  0?

Similarly, we would find v 3 : w3 
w3,v 1

v 1
2 v 1 

w3,v 2

v 2
2 v 2.

More generally, suppose we’ve already constructed mutually orthogonal v 1, , v k1 as linear combinations of w1, ,wk1.

The next orthogonal basis element v k will be obtained from wk by subtracting off a suitable linear combination of the

previous orthogonal basis elements:

v k  wk  c1 v 1 ck1 v k1.

And since v 1, , v k1 are already orthogonal, for each j  1, ,k  1, we use the orthogonality constraint:

0  v k, v j   wk, v j   c jv j, v j  requiring c j 
wk,v j

v j
2 .



In this fashion, we establish the general Gram-Schmidt formula: v k : wk  j1
k1 wk,v j

v j
2 v j, k  1, ,n. 

(See animation in class)

To form an orthonormal basis, given a basis w1, ,wn, we replace each orthogonal basis vector in the Gram-Schmidt

formula  by its normalized version u j 
v j

v j
.

Example: Observe that w1  1,1,1, w2  1,0,2, and w3  2,2,3 form a basis of R3 (feel free to check).

Construct an orthogonal basis (with respect to the standard dot product) using the Gram-Schmidt process.

v 1 : w1  1,1,1.

v 2  w2  w2v 1

v 1
2 v 1  1,0,2   1

3 1,1,1  4
3 ,

1
3 ,

5
3 .

v 3  w3  w3v 1

v 1
2 v 1  w3v 2

v 2
2 v 2  2,2,3   3

3 1,1,1  7
14
3

4
3 ,

1
3 ,

5
3  1, 3

2 ,
1
2 .

What are the corresponding orthonormal basis vectors?

v 1  3 , v 2  14
3 , v 3  7

2 .

Therefore: u 1  1

3
, 1

3
, 1

3
, u 2  4

42
, 1

42
, 5

42
, u 3  2

14
, 3

14
, 1

14
.

According to a previous theorem, every finite dimensional vector space (except 0 ) admits a basis.

Therefore, given the Gram-Schmidt process, we have the following...

Theorem: Every nonzero finite dimensional inner product space has an orthonormal basis.



Modifications of the Gram-Schmidt Process

Recall the general Gram-Schmidt: v k : wk  j1
k1 wk,v j

v j
2 v j, k  1, ,n.

If you substitute into this: v j  v j u j, and then solve for wk, then the original basis w i can be expressed in terms

of the orthonormal basis u i via a triangular system.

w1  r11u 1,

w2  r12u 1  r22u 2,

w3  r13u 1  r23u 2  r33u 3,

   

wn  r1nu 1  r2nu 2 rnnu n,

where rij  w j, u i .  

For instance: v 1 : w1, so substituting, we have w1  v 1 u 1  w1 u 1  1
w1

w1
2
u 1

 1
w1

w1,w1 u 1  w1, u 1 u 1  r11u 1.

The value for rij can be shown more generally by taking the inner product of each of these w j equations with the orthonormal

basis vectors u i for i  j.

Taking into account the orthonormality constraints observe:

w j, u i   r1ju 1 rjj u j, u i   r1ju 1, u i  rjju n, u i   rij, and hence: rij  w j, u i .

v 2 : w2 
w2,v 1

v 1
2 v 1, so substituting: v 2 : w2 

w2, v 1 u 1

v 1
2 v 1 u 1  w2  w2, u 1 u 1  w2  r12u 1

Therefore: w2  r12u 1  v 2  r12u 1  v 2 u 2. So apparently: v 2  r22  w2, u 2 .

We will use the system   in the next section to recharacterize the Gram-Schmidt process as matrix factorization.


