Applied Linear Algebra

Instructor: Jodin Morey moreyjc@umn.edu

4.2 The Gram-Schmidt Process

So, we've learned orthogonal and orthonormal bases are important. But how do we construct them?

Gram-Schmidt Process

Let W denote a finite dimensional inner product space. Assume some basis $\vec{w}_{1}, \ldots, \vec{w}_{n}$ of W, where $n=\operatorname{dim} W$.

Our goal is to construct an orthogonal basis $\vec{v}_{1}, \ldots, \vec{v}_{n}$. So, set $\vec{v}_{1}:=\vec{w}_{1}$. Note that $\vec{v}_{1} \neq \overrightarrow{0}$.

Next, working with \vec{w}_{2}, and insisting $\left\langle\vec{v}_{2}, \vec{v}_{1}\right\rangle=0$, we arrange this by subtracting from \vec{w}_{2} a suitable multiple of \vec{v}_{1} :

$$
\begin{aligned}
& \vec{v}_{2}=\vec{w}_{2}-c \vec{v}_{1} \text {, where } c \text { is yet to be determined. } \\
& 0=\left\langle\vec{v}_{2}, \vec{v}_{1}\right\rangle=\left\langle\vec{w}_{2}-c \vec{v}_{1}, \vec{v}_{1}\right\rangle=\left\langle\vec{w}_{2}, \vec{v}_{1}\right\rangle-c\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle=\left\langle\vec{w}_{2}, \vec{v}_{1}\right\rangle-c\left|\vec{v}_{1}\right|^{2} \text {, requiring } c=\frac{\left\langle\vec{w}_{2}, \vec{v}_{1}\right\rangle}{\left|\vec{v}_{1}\right|^{2}} .
\end{aligned}
$$

Therefore: $\vec{v}_{2}:=\vec{w}_{2}-\frac{\left\langle\vec{w}_{2}, \vec{v}_{1}\right\rangle}{\left|\vec{v}_{1}\right|^{2}} \vec{v}_{1}$.

How does the linearity of $\vec{v}_{1}=\vec{w}_{1}$ and \vec{w}_{2} ensure that $\vec{v}_{2} \neq \overrightarrow{0}$?

Similarly, we would find $\vec{v}_{3}:=\vec{w}_{3}-\frac{\left\langle\vec{w}_{3}, \vec{v}_{1}\right\rangle}{\left|\vec{v}_{1}\right|^{2}} \vec{v}_{1}-\frac{\left\langle\vec{w}_{3}, \vec{v}_{2}\right\rangle}{\left|\vec{v}_{2}\right|^{2}} \vec{v}_{2}$.

More generally, suppose we've already constructed mutually orthogonal $\vec{v}_{1}, \ldots, \vec{v}_{k-1}$ as linear combinations of $\vec{w}_{1}, \ldots, \vec{w}_{k-1}$.

The next orthogonal basis element \vec{v}_{k} will be obtained from \vec{w}_{k} by subtracting off a suitable linear combination of the previous orthogonal basis elements:

$$
\vec{v}_{k}=\vec{w}_{k}-c_{1} \vec{v}_{1}-\ldots-c_{k-1} \vec{v}_{k-1} .
$$

And since $\vec{v}_{1}, \ldots, \vec{v}_{k-1}$ are already orthogonal, for each $j=1, \ldots, k-1$, we use the orthogonality constraint:

$$
0=\left\langle\vec{v}_{k}, \vec{v}_{j}\right\rangle=\left\langle\vec{w}_{k}, \vec{v}_{j}\right\rangle-c_{j}\left\langle\vec{v}_{j}, \vec{v}_{j}\right\rangle \text { requiring } c_{j}=\frac{\left\langle\vec{w}_{k}, \vec{v}_{j}\right\rangle}{\left|\vec{v}_{j}\right|^{2}} .
$$

In this fashion, we establish the general Gram-Schmidt formula: $\vec{v}_{k}:=\vec{w}_{k}-\sum_{j=1}^{k-1} \frac{\left\langle\vec{w}_{k} \vec{v}_{j}\right\rangle}{\left|\vec{v}_{j}\right|^{2}} \vec{v}_{j}, \quad k=1, \ldots, n$.

(See animation in class)

To form an orthonormal basis, given a basis $\vec{w}_{1}, \ldots, \vec{w}_{n}$, we replace each orthogonal basis vector in the Gram-Schmidt formula (*) by its normalized version $\vec{u}_{j}=\frac{\vec{v}_{j}}{\left|\vec{v}_{j}\right|}$.

Example: Observe that $\vec{w}_{1}=(1,1,-1), \quad \vec{w}_{2}=(1,0,2)$, and $\vec{w}_{3}=(2,-2,3)$ form a basis of \mathbb{R}^{3} (feel free to check). Construct an orthogonal basis (with respect to the standard dot product) using the Gram-Schmidt process.

$$
\begin{aligned}
& \vec{v}_{1}:=\vec{w}_{1}=(1,1,-1) \\
& \vec{v}_{2}=\vec{w}_{2}-\frac{\vec{w}_{2} \cdot \vec{v}_{1}}{\left|\vec{v}_{1}\right|^{2}} \vec{v}_{1}=(1,0,2)-\left(-\frac{1}{3}\right)(1,1,-1)=\left(\frac{4}{3}, \frac{1}{3}, \frac{5}{3}\right) . \\
& \vec{v}_{3}=\vec{w}_{3}-\frac{\vec{w}_{3} \cdot \vec{v}_{1}}{\left|\vec{v}_{1}\right|^{2}} \vec{v}_{1}-\frac{\vec{w}_{3} \cdot \vec{v}_{2}}{\left|\overrightarrow{2}_{2}\right|^{2}} \vec{v}_{2}=(2,-2,3)-\left(-\frac{3}{3}\right)(1,1,-1)-\left(\frac{7}{\frac{14}{3}}\right)\left(\frac{4}{3}, \frac{1}{3}, \frac{5}{3}\right)=\left(1,-\frac{3}{2},-\frac{1}{2}\right) .
\end{aligned}
$$

What are the corresponding orthonormal basis vectors?

$$
\left|\vec{v}_{1}\right|=\sqrt{3}, \quad\left|\vec{v}_{2}\right|=\sqrt{\frac{14}{3}}, \quad\left|\vec{v}_{3}\right|=\sqrt{\frac{7}{2}} .
$$

Therefore: $\vec{u}_{1}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right), \quad \vec{u}_{2}=\left(\frac{4}{\sqrt{42}}, \frac{1}{\sqrt{42}}, \frac{5}{\sqrt{42}}\right), \quad \vec{u}_{3}=\left(\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}},-\frac{1}{\sqrt{14}}\right)$.

According to a previous theorem, every finite dimensional vector space (except $\{\overrightarrow{0}\}$) admits a basis. Therefore, given the Gram-Schmidt process, we have the following...

Theorem: Every nonzero finite dimensional inner product space has an orthonormal basis.

Modifications of the Gram-Schmidt Process

Recall the general Gram-Schmidt: $\vec{v}_{k}:=\vec{w}_{k}-\sum_{j=1}^{k-1} \frac{\left\langle\vec{w}_{k} \vec{v}_{j}\right\rangle}{\left|\vec{v}_{j}\right|^{2}} \vec{v}_{j}, \quad k=1, \ldots, n$.

If you substitute into this: $\vec{v}_{j}=\left|\vec{v}_{j}\right| \vec{u}_{j}$, and then solve for \vec{w}_{k}, then the original basis \vec{w}_{i} can be expressed in terms of the orthonormal basis \vec{u}_{i} via a triangular system.

$$
\begin{aligned}
& \vec{w}_{1}=r_{11} \vec{u}_{1} \\
& \vec{w}_{2}=r_{12} \vec{u}_{1}+r_{22} \vec{u}_{2}, \\
& \vec{w}_{3}=r_{13} \vec{u}_{1}+r_{23} \vec{u}_{2}+r_{33} \vec{u}_{3}, \\
& \vdots \\
& \vdots
\end{aligned} \quad \vdots \quad \ddots \quad \vec{w}_{n}=r_{1 n} \vec{u}_{1}+r_{2 n} \vec{u}_{2}+\ldots+r_{n n} \vec{u}_{n}, ~ l
$$

where $r_{i j}=\left\langle\vec{w}_{j}, \vec{u}_{i}\right\rangle$.

$$
(* *)
$$

For instance: $\vec{v}_{1}:=\vec{w}_{1}$, so substituting, we have $\vec{w}_{1}=\left|\vec{v}_{1}\right| \vec{u}_{1}=\left|\vec{w}_{1}\right| \vec{u}_{1}=\frac{1}{\left|\vec{w}_{1}\right|}\left|\vec{w}_{1}\right|^{2} \vec{u}_{1}$

$$
=\frac{1}{\left|\vec{w}_{1}\right|}\left\langle\vec{w}_{1}, \vec{w}_{1}\right\rangle \vec{u}_{1}=\left\langle\vec{w}_{1}, \vec{u}_{1}\right\rangle \vec{u}_{1}=r_{11} \vec{u}_{1} .
$$

The value for $r_{i j}$ can be shown more generally by taking the inner product of each of these \vec{w}_{j} equations with the orthonormal basis vectors \vec{u}_{i} for $i \leq j$.

Taking into account the orthonormality constraints observe:

$$
\left\langle\vec{w}_{j}, \vec{u}_{i}\right\rangle=\left\langle r_{1 j} \vec{u}_{1}+\ldots+r_{j j} \vec{u}_{j}, \vec{u}_{i}\right\rangle=r_{1 j}\left\langle\vec{u}_{1}, \vec{u}_{i}\right\rangle+\ldots+r_{j j}\left\langle\vec{u}_{n}, \vec{u}_{i}\right\rangle=r_{i j} \text {, and hence: } r_{i j}=\left\langle\vec{w}_{j}, \vec{u}_{i}\right\rangle .
$$

$$
\vec{v}_{2}:=\vec{w}_{2}-\frac{\left\langle\vec{w}_{2}, \vec{v}_{1}\right\rangle}{\left|\vec{v}_{1}\right|^{2}} \vec{v}_{1} \text {, so substituting: } \vec{v}_{2}:=\vec{w}_{2}-\frac{\left\langle\vec{w}_{2},\right| \vec{v}_{1}\left|\vec{u}_{1}\right\rangle}{\left|\vec{v}_{1}\right|^{2}}\left|\vec{v}_{1}\right| \vec{u}_{1}=\vec{w}_{2}-\left\langle\vec{w}_{2}, \vec{u}_{1}\right\rangle \vec{u}_{1}=\vec{w}_{2}-r_{12} \vec{u}_{1}
$$

Therefore: $\vec{w}_{2}=r_{12} \vec{u}_{1}+\vec{v}_{2}=r_{12} \vec{u}_{1}+\left|\vec{v}_{2}\right| \vec{u}_{2}$. So apparently: $\left|\vec{v}_{2}\right|=r_{22}=\left\langle\vec{w}_{2}, \vec{u}_{2}\right\rangle$.

We will use the system $(* *)$ in the next section to recharacterize the Gram-Schmidt process as matrix factorization.

