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Chapter 4: Orthogonality
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Orthogonality is the generalization of the idea of perpendicularity. Recall v ,w are called orthogonal if v ,w  0.

Definition: A basis u 1, , u n of an n-dimensional inner product space V is called an orthogonal basis if u i, u j   0

for all i  j. It is called an orthonormal basis if, in addition, each vector has unit length: u i  1, for all i  1, ,n.

In application, and in theoretical research, choosing mutually orthogonal basis elements is extremely powerful.

Definition: A is called an orthogonal matrix if its columns form an orthonormal system.

In this chapter, we will learn how to adjust a basis to be an orthonormal basis (§4.2, Gram-Schmidt), to decompose matrices

into orthogonal matrices (§4.3 QR decomp), and to orthogonally project vectors onto subspaces (§4.4).

We will also learn about orthogonal subspaces which are orthogonal to each other (§4.4).

The four fundamental subspaces of a matrix ((co-)image,(co-)kernel) that were introduced in §2 come in mutually

orthogonal pairs. This will lead to an intriguing result in §4.4 (Fredholm Alternative).

Applications
Fourier analysis decomposes waves (music, or any signal) into sines/cosines which form orthogonal system of functions

(CDs, DVDs, MP3s).



Orthogonal projections turn out to be incredibly important in:

Statistics (regression) Probability Gram-Schmidt

Computer graphics Data science/analysis Pattern recognition/AI

4.1 Orthogonal and Orthonormal Bases

Lemma: If v 1, , v n is an orthogonal basis of a vector space V, then the normalized vectors

u i 
v i

v i
, i  1, ,n form an orthonormal basis.

Specifically: v 1  1,2,1, v 2  0,1,2, and v 3  5,2,1 are easily seen to form a basis of R3.

One can also check: v 1  v 2  v 1  v 3  v 2  v 3  0. So, form an orthogonal basis wrt standard dot product.

When we divide each orthogonal basis by its length, the result is the orthonormal basis:

u 1  1

6
1,2,1  1

6
, 2

6
, 1

6
, u 2  0, 1

5
, 2

5
, and u 3  5

30
, 2

30
, 1

30
.

Observe u i  1, and u i  u j  0, when i  j.

Proposition: Let v 1, , v n  V be nonzero, mutually orthogonal elements, so v i  0 and v i, v j   0 for all i  j.

Then v 1, , v k are linearly independent.

Proof: Suppose c1 v 1 ck v k  0.

We must show that the c i need be zero.

Let’s take the inner product of this equation with any v i. Using linearity and orthogonality, we compute:

0  c1 v 1 ck v k, v i   c1v 1, v i  ckv k, v i   c iv i, v i   c i v i
2
.

Therefore, given that v i  0, we conclude that c i  0.



Since this holds for all i  1, ,k, the linear independence of v 1, , v n follows. 

Theorem: Suppose v 1, , v n are nonzero, mutually orthogonal elements of an inner product space V.

Then, v 1, , v n form an orthogonal basis for their span W  spanv 1, , v n  V, which is therefore a

subspace of dimension n  dimW. In particular, if dimV  n, then v 1, , v n form an orthogonal basis for V.

Specifically: Consider P2, consisting of px    x  x2, equipped with the L2 inner product and norm.

Standard monomials 1, x,x2 do not form an orthogonal basis. As calculated previously:

1,x  1
2 , 1,x2   1

3 , x,x2   1
4 .

One orthogonal basis is provided by: p1x  1, p2x  x  1
2 , p3x  x2  x  1

6 .

One easily verifies p1,p2   p1,p3   p2,p3   0, while |p1 |  1, |p2 |  1

2 3
, |p3 |  1

6 5
.

Forming the orthonormal basis: u1x  1, u2x  3 2x  1, u3x  5 6x2  6x  1.

§4.5 will give us a systematic way to find the orthogonal basis yourself.

Computations in Orthogonal Bases

In high dimensions, computations can take a long time. However, switching to an orthogonal or orthonormal system can
dramatically speed up the computations. This has allowed for many advancements including MP3s, CDs, DVDs, YouTube,
least-squares approximations, and the statistical analysis of large data sets (and much more).

Theorem: Let u 1, , u n be an orthonormal basis for an inner product space V. Then, one can write any element v  V

as a linear combination: v  c1u 1 cnu n, in which its coordinates can be calculated as c i  v , u i .

Moreover, v ’s norm is given by the Pythagorean formula: v  c1
2 cn2   i1

n
v , u i 

2
.

Proof: Let’s compute the inner product of v (or c1u 1 cnu n) with one of the basis vectors.

Using the orthonormality conditions: u i, u j  
0 i  j,

1 i  j,
and bilinearity of the inner product, we obtain:

v , u i    j1
n c ju j, u i   j1

n c ju j, u i   c i u i
2
 c i.

To prove the last formula in the theorem, we similarly expand



v
2
 v , v    j1

n c iu i, j1
n c ju j   i,j1

n c ic ju i, u j    i1
n c i2,

again making use of the orthonormality of the basis elements. 

Specifically: let’s rewrite v  1,1,1 in terms of the orthonormal basis:

u 1  1

6
, 2

6
, 1

6
, u 2  0, 1

5
, 2

5
, and u 3  5

30
, 2

30
, 1

30
.

Computing the dot product: v  u 1  2

6
, v  u 2  3

5
, v  u 3  4

30
. And therefore:

v  2

6
u 1  3

5
u 2  4

30
u 3.

Observe how much easier this is than solving the linear system v  u 1 u nc (chapter 2).

Theorem: If v 1, , v n form an orthogonal basis, then the corresponding coordinates of v : a1 v 1 an v n are given by

ai 
v ,v i

v i
2 . In this case, its norm can be computed using the formula: v

2
  i1

n ai
2 v i

2
  i1

n v ,v i

v i

2

.

Example: Let R2 have the inner product defined by the positive definite matrix K 
2 1

1 3
.

a) Show that v 1  1,1, v 2  2,1 form an orthogonal basis. ...

v 1, v 2   v 1
T
Kv 2  1 1

2 1

1 3

2

1
 1 1

5

5
 0.

b)Write v  3,2 as a linear combination of v 1, v 2 using the orthogonality formul in the above theorem.

a1 
v ,v 1

v 1
2 , a2 

v ,v 2

v 2
2 .

v , v 1   3 2
2 1

1 3

1

1
 7. v , v 2   3 2

2 1

1 3

2

1
  5.

v 1
2
 v 1, v 1   1 1

2 1

1 3

1

1
 3. v 2

2
 2 1

2 1

1 3

2

1
 15.

So, a1  7
3 , a2  5

15 and v  7
3 v 1  1

3 v 2.

c) Verify the norm formula in the above theorem for v .



v
2
  i1

n ai
2 v i

2
  i1

n v ,v i

v i

2


v ,v 1

v 1

2


v ,v 2

v 2

2

 7

3

2
 5

15

2
 18.

Alternatively: v
2
 3 2

2 1

1 3

3

2
 18. 

d) Find an orthogonal basis u 1, u 2 for this inner product.

u 1 
v 1

v 1
 1,1

3
 1

3
, 1

3
. u 2 

v 2

v 2
 2,1

15
  2

15
, 1

15
.

e)Write v as a linear combination of the orthonormal basis, and verify

v  c1
2 cn2   i1

n
v , u i 

2
from the first theorem in this section.

v , u 1   3,2, 1

3
, 1

3
 3 2

2 1

1 3

1

3

1

3

 7 3
3 .

v , u 2   3,2,  2

15
, 1

15
 3 2

2 1

1 3

 2

15

1

15

  15
3 .

v  c1u 1  c2u 2  v , u 1 u 1  v , u 2 u 2 
7 3
3

1

3
, 1

3
 15

3  2

15
, 1

15
 3 2 . 

v   i1
n

v , u i 
2
 v , u 1 

2
 v , u 2 

2

So, v  7 3
3

2
  15

3

2
 18 .  (matches the result in part c)


