Chapter 4: Orthogonality

Orthogonality is the generalization of the idea of perpendicularity. Recall \vec{v}, \vec{w} are called orthogonal if $\langle\vec{v}, \vec{w}\rangle=0$.

Definition: A basis $\vec{u}_{1}, \ldots, \vec{u}_{n}$ of an n-dimensional inner product space V is called an orthogonal basis if $\left\langle\vec{u}_{i}, \vec{u}_{j}\right\rangle=0$ for all $i \neq j$. It is called an orthonormal basis if, in addition, each vector has unit length: $\left|\vec{u}_{i}\right|=1$, for all $i=1, \ldots, n$.

In application, and in theoretical research, choosing mutually orthogonal basis elements is extremely powerful.

Definition: A is called an orthogonal matrix if its columns form an orthonormal system.

In this chapter, we will learn how to adjust a basis to be an orthonormal basis ($\$ 4.2$, Gram-Schmidt), to decompose matrices into orthogonal matrices ($\S 4.3 \mathrm{QR}$ decomp), and to orthogonally project vectors onto subspaces (§4.4).
We will also learn about orthogonal subspaces which are orthogonal to each other (§4.4).

The four fundamental subspaces of a matrix ((co-)image,(co-)kernel) that were introduced in $\S 2$ come in mutually orthogonal pairs. This will lead to an intriguing result in §4.4 (Fredholm Alternative).

Applications

Fourier analysis decomposes waves (music, or any signal) into sines/cosines which form orthogonal system of functions (CDs, DVDs, MP3s).

Orthogonal projections turn out to be incredibly important in:

Statistics (regression)

Computer graphics

Probability

Data science/analysis

Gram-Schmidt

Pattern recognition/AI

4.1 Orthogonal and Orthonormal Bases

Lemma: If $\vec{v}_{1}, \ldots, \vec{v}_{n}$ is an orthogonal basis of a vector space V, then the normalized vectors $\vec{u}_{i}=\frac{\vec{v}_{i}}{\left|\vec{v}_{i}\right|}, i=1, \ldots, n$ form an orthonormal basis.

Specifically: $\vec{v}_{1}=(1,2,-1), \quad \vec{v}_{2}=(0,1,2)$, and $\vec{v}_{3}=(5,-2,1)$ are easily seen to form a basis of \mathbb{R}^{3}.

One can also check: $\vec{v}_{1} \cdot \vec{v}_{2}=\vec{v}_{1} \cdot \vec{v}_{3}=\vec{v}_{2} \cdot \vec{v}_{3}=0$. So, form an orthogonal basis wrt standard dot product.

When we divide each orthogonal basis by its length, the result is the orthonormal basis:

$$
\vec{u}_{1}=\frac{1}{\sqrt{6}}(1,2,-1)=\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right), \quad \vec{u}_{2}=\left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right), \text { and } \vec{u}_{3}=\left(\frac{5}{\sqrt{30}},-\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}\right) .
$$

Observe $\left|\vec{u}_{i}\right|=1$, and $\vec{u}_{i} \cdot \vec{u}_{j}=0$, when $i \neq j$.

Proposition: Let $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ be nonzero, mutually orthogonal elements, so $\vec{v}_{i} \neq \overrightarrow{0}$ and $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=0$ for all $i \neq j$. Then $\vec{v}_{1}, \ldots, \vec{v}_{k}$ are linearly independent.

Proof: Suppose $c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}$

We must show that the c_{i} need be zero.

Let's take the inner product of this equation with any \vec{v}_{i}. Using linearity and orthogonality, we compute:

$$
0=\left\langle c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}, \vec{v}_{i}\right\rangle=c_{1}\left\langle\vec{v}_{1}, \vec{v}_{i}\right\rangle+\ldots+c_{k}\left\langle\vec{v}_{k}, \vec{v}_{i}\right\rangle=c_{i}\left\langle\vec{v}_{i}, \vec{v}_{i}\right\rangle=c_{i}\left|\vec{v}_{i}\right|^{2}
$$

Therefore, given that $\vec{v}_{i} \neq \overrightarrow{0}$, we conclude that $c_{i}=0$.

Since this holds for all $i=1, \ldots, k$, the linear independence of $\vec{v}_{1}, \ldots, \vec{v}_{n}$ follows.

Theorem: Suppose $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are nonzero, mutually orthogonal elements of an inner product space V.
Then, $\vec{v}_{1}, \ldots, \vec{v}_{n}$ form an orthogonal basis for their span $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subset V$, which is therefore a subspace of dimension $n=\operatorname{dim} W$. In particular, if $\operatorname{dim} V=n$, then $\vec{v}_{1}, \ldots, \vec{v}_{n}$ form an orthogonal basis for V.

Specifically: Consider $P^{(2)}$, consisting of $p(x)=\alpha+\beta x+\gamma x^{2}$, equipped with the L^{2} inner product and norm.

Standard monomials $1, x, x^{2}$ do not form an orthogonal basis. As calculated previously:

$$
\langle 1, x\rangle=\frac{1}{2}, \quad\left\langle 1, x^{2}\right\rangle=\frac{1}{3}, \quad\left\langle x, x^{2}\right\rangle=\frac{1}{4} .
$$

One orthogonal basis is provided by: $p_{1}(x)=1, p_{2}(x)=x-\frac{1}{2}, \quad p_{3}(x)=x^{2}-x+\frac{1}{6}$.

One easily verifies $\left\langle p_{1}, p_{2}\right\rangle=\left\langle p_{1}, p_{3}\right\rangle=\left\langle p_{2}, p_{3}\right\rangle=0$, while $\left|p_{1}\right|=1, \quad\left|p_{2}\right|=\frac{1}{2 \sqrt{3}}, \quad\left|p_{3}\right|=\frac{1}{6 \sqrt{5}}$.

Forming the orthonormal basis: $u_{1}(x)=1, \quad u_{2}(x)=\sqrt{3}(2 x-1), \quad u_{3}(x)=\sqrt{5}\left(6 x^{2}-6 x+1\right)$.
$\S 4.5$ will give us a systematic way to find the orthogonal basis yourself.

Computations in Orthogonal Bases

In high dimensions, computations can take a long time. However, switching to an orthogonal or orthonormal system can dramatically speed up the computations. This has allowed for many advancements including MP3s, CDs, DVDs, YouTube, least-squares approximations, and the statistical analysis of large data sets (and much more).

Theorem: Let $\vec{u}_{1}, \ldots, \vec{u}_{n}$ be an orthonormal basis for an inner product space V. Then, one can write any element $\vec{v} \in V$ as a linear combination: $\vec{v}=c_{1} \vec{u}_{1}+\ldots+c_{n} \vec{u}_{n}$, in which its coordinates can be calculated as $c_{i}=\left\langle\vec{v}, \vec{u}_{i}\right\rangle$.
Moreover, \vec{v} 's norm is given by the Pythagorean formula: $|\vec{v}|=\sqrt{c_{1}^{2}+\ldots+c_{n}^{2}}=\sqrt{\sum_{i=1}^{n}\left\langle\vec{v}, \vec{u}_{i}\right\rangle^{2}}$.

Proof: Let's compute the inner product of \vec{v} (or $c_{1} \vec{u}_{1}+\ldots+c_{n} \vec{u}_{n}$) with one of the basis vectors.

Using the orthonormality conditions: $\left\langle\vec{u}_{i}, \vec{u}_{j}\right\rangle=\left\{\begin{array}{ll}0 & i \neq j, \\ 1 & i=j,\end{array}\right.$ and bilinearity of the inner product, we obtain:

$$
\left\langle\vec{v}, \vec{u}_{i}\right\rangle=\left\langle\sum_{j=1}^{n} c_{j} \vec{u}_{j}, \vec{u}_{i}\right\rangle=\sum_{j=1}^{n} c_{j}\left\langle\vec{u}_{j}, \vec{u}_{i}\right\rangle=c_{i}\left|\vec{u}_{i}\right|^{2}=c_{i} .
$$

To prove the last formula in the theorem, we similarly expand

$$
|\vec{v}|^{2}=\langle\vec{v}, \vec{v}\rangle=\left\langle\sum_{j=1}^{n} c_{i} \vec{u}_{i}, \sum_{j=1}^{n} c_{j} \vec{u}_{j}\right\rangle=\sum_{i, j=1}^{n} c_{i} c_{j}\left\langle\vec{u}_{i}, \vec{u}_{j}\right\rangle=\sum_{i=1}^{n} c_{i}^{2},
$$

again making use of the orthonormality of the basis elements.

Specifically: let's rewrite $\vec{v}=(1,1,1)$ in terms of the orthonormal basis:

$$
\vec{u}_{1}=\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right), \quad \vec{u}_{2}=\left(0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) \text {, and } \vec{u}_{3}=\left(\frac{5}{\sqrt{30}},-\frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}\right) .
$$

Computing the dot product: $\vec{v} \cdot \vec{u}_{1}=\frac{2}{\sqrt{6}}, \quad \vec{v} \cdot \vec{u}_{2}=\frac{3}{\sqrt{5}}, \quad \vec{v} \cdot \vec{u}_{3}=\frac{4}{\sqrt{30}}$. And therefore:

$$
\vec{v}=\frac{2}{\sqrt{6}} \vec{u}_{1}+\frac{3}{\sqrt{5}} \vec{u}_{2}+\frac{4}{\sqrt{30}} \vec{u}_{3} .
$$

Observe how much easier this is than solving the linear system $\vec{v}=\left[\vec{u}_{1} \ldots \vec{u}_{n}\right] \vec{c}$ (chapter 2).

Theorem: If $\vec{v}_{1}, \ldots, \vec{v}_{n}$ form an orthogonal basis, then the corresponding coordinates of $\vec{v}:=a_{1} \vec{v}_{1}+\ldots+a_{n} \vec{v}_{n}$ are given by $a_{i}=\frac{\left\langle\vec{v} \vec{v}_{i}\right\rangle}{\left|\vec{v}_{i}\right|^{2}}$. In this case, its norm can be computed using the formula: $|\vec{v}|^{2}=\sum_{i=1}^{n} a_{i}^{2}\left|\vec{v}_{i}\right|^{2}=\sum_{i=1}^{n}\left(\frac{\left\langle\vec{v}, \vec{v}_{i}\right\rangle}{\left|\vec{v}_{i}\right|}\right)^{2}$.

Example: Let \mathbb{R}^{2} have the inner product defined by the positive definite matrix $\mathbf{K}=\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]$.
a) Show that $\vec{v}_{1}=(1,1), \vec{v}_{2}=(-2,1)$ form an orthogonal basis.

$$
\left\langle\vec{v}_{1}, \vec{v}_{2}\right\rangle=\vec{v}_{1}^{T} \mathbf{K} \vec{v}_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{c}
-5 \\
5
\end{array}\right]=0 .
$$

b) Write $\vec{v}=(3,2)$ as a linear combination of \vec{v}_{1}, \vec{v}_{2} using the orthogonality formul in the above theorem.

$$
\begin{aligned}
& a_{1}=\frac{\left\langle\vec{v}, \vec{v}_{1}\right\rangle}{\left|\vec{v}_{1}\right|^{2}}, \quad a_{2}=\frac{\left\langle\vec{v}, \vec{v}_{2}\right\rangle}{\left|\vec{v}_{2}\right|^{2}} . \\
& \left\langle\vec{v}, \vec{v}_{1}\right\rangle=\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=7 . \quad\left\langle\vec{v}, \vec{v}_{2}\right\rangle=\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=-5 . \\
& \left|\vec{v}_{1}\right|^{2}=\left\langle\vec{v}_{1}, \vec{v}_{1}\right\rangle=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=3 . \quad\left|\vec{v}_{2}\right|^{2}=\left[\begin{array}{ll}
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=15 .
\end{aligned}
$$

So, $a_{1}=\frac{7}{3}, \quad a_{2}=\frac{-5}{15}$ and $\vec{v}=\frac{7}{3} \vec{v}_{1}-\frac{1}{3} \vec{v}_{2}$.
c) Verify the norm formula in the above theorem for $|\vec{v}|$.
$|\vec{v}|^{2}=\sum_{i=1}^{n} a_{i}^{2}\left|\vec{v}_{i}\right|^{2}=\sum_{i=1}^{n}\left(\frac{\left\langle\vec{v}, \vec{v}_{i}\right\rangle}{\left|\vec{v}_{i}\right|}\right)^{2}=\left(\frac{\left\langle\vec{v}, \vec{v}_{1}\right\rangle}{\left|\vec{v}_{1}\right|}\right)^{2}+\left(\frac{\left\langle\vec{v}, \vec{v}_{2}\right\rangle}{\left|\vec{v}_{2}\right|}\right)^{2}=\left(\frac{7}{\sqrt{3}}\right)^{2}+\left(\frac{-5}{\sqrt{15}}\right)^{2}=18$.

Alternatively: $|\vec{v}|^{2}=\left[\begin{array}{ll}3 & 2\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -1 & 3\end{array}\right]\left[\begin{array}{l}3 \\ 2\end{array}\right]=18$.
d) Find an orthogonal basis \vec{u}_{1}, \vec{u}_{2} for this inner product.

$$
\vec{u}_{1}=\frac{\vec{v}_{1}}{\left|\vec{v}_{1}\right|}=\frac{(1,1)}{\sqrt{3}}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) . \quad \vec{u}_{2}=\frac{\vec{v}_{2}}{\left|\vec{v}_{2}\right|}=\frac{(-2,1)}{\sqrt{15}}=\left(-\frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}}\right) .
$$

e) Write \vec{v} as a linear combination of the orthonormal basis, and verify
$|\vec{v}|=\sqrt{c_{1}^{2}+\ldots+c_{n}^{2}}=\sqrt{\sum_{i=1}^{n}\left\langle\vec{v}, \vec{u}_{i}\right\rangle^{2}}$ from the first theorem in this section.

$$
\begin{aligned}
& \left\langle\vec{v}, \vec{u}_{1}\right\rangle=\left\langle(3,2),\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\right\rangle=\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right]=\frac{7 \sqrt{3}}{3} . \\
& \left\langle\vec{v}, \vec{u}_{2}\right\rangle=\left\langle(3,2),\left(-\frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}}\right)\right\rangle=\left[\begin{array}{ll}
3 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
-\frac{2}{\sqrt{15}} \\
\frac{1}{\sqrt{15}}
\end{array}\right]=-\frac{\sqrt{15}}{3} .
\end{aligned}
$$

$$
\vec{v}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}=\left\langle\vec{v}, \vec{u}_{1}\right\rangle \vec{u}_{1}+\left\langle\vec{v}, \vec{u}_{2}\right\rangle \vec{u}_{2}=\frac{7 \sqrt{3}}{3}\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)-\frac{\sqrt{15}}{3}\left(-\frac{2}{\sqrt{15}}, \frac{1}{\sqrt{15}}\right)=\left[\begin{array}{ll}
3 & 2
\end{array}\right] .
$$

$$
|\vec{v}|=\sqrt{\sum_{i=1}^{n}\left\langle\vec{v}, \vec{u}_{i}\right\rangle^{2}}=\sqrt{\left\langle\vec{v}, \vec{u}_{1}\right\rangle^{2}+\left\langle\vec{v}, \vec{u}_{2}\right\rangle^{2}}
$$

So, $|\vec{v}|=\sqrt{\left(\frac{7 \sqrt{3}}{3}\right)^{2}+\left(-\frac{\sqrt{15}}{3}\right)^{2}}=\sqrt{18} . \quad \checkmark \quad$ (matches the result in part c)

