Applied Linear Algebra

Instructor: Jodin Morey moreyjc@umn.edu

3.5 Completing the Square

Determining the Positive Definiteness of a Matrix

"Completing the square" has previously assisted you in deriving the quadratic formula, and later for integrating various types of rational and algebraic functions.

Given: $q(x)=a x^{2}+2 b x+c=0$
$q(x)=a\left(x+\frac{b}{a}\right)^{2}+\frac{a c-b^{2}}{a}=0$.

As a result: $\left(x+\frac{b}{a}\right)^{2}=\frac{b^{2}-a c}{a^{2}}$ and $x=\frac{-b \pm \sqrt{b^{2}-a c}}{a}$.

Similarly: given $q\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$, where $a \neq 0$,

$$
\begin{align*}
q\left(x_{1}, x_{2}\right) & =a\left(x_{1}+\frac{b}{a} x_{2}\right)^{2}+\frac{a c-b^{2}}{a} x_{2}^{2} \\
& =a y_{1}^{2}+\frac{a c-b^{2}}{a} y_{2}^{2}, \tag{1}
\end{align*}
$$

where $y_{1}=x_{1}+\frac{b}{a} x_{2}$ and $y_{2}=x_{2}$.

Expression (1) is positive definite in y_{1}, y_{2} if $a>0$ and $\frac{a c-b^{2}}{a}>0$.

This would mean, $q\left(x_{1}, x_{2}\right) \geq 0$. We get equality iff

$$
y_{1}=y_{2}=0 \quad \Leftrightarrow \quad x_{1}=x_{2}=0 .
$$

Goal: Generalize to More Variables

Observe quadratic form $q\left(x_{1}, x_{2}\right)$ above can be rewriten as: $\vec{x}^{T} \mathbf{K} \vec{x}$, where $\mathbf{K}=\quad$??

$$
\mathbf{K}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right], \quad \vec{x}:=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

RHS of (1) can be written as $\widehat{q}(\vec{y}):=\vec{y}^{T} \mathbf{D} \vec{y}$,
where $\mathbf{D}:=\left[\begin{array}{cc}a & 0 \\ 0 & \frac{a c-b^{2}}{a}\end{array}\right], \quad \vec{y}:=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$.

From (2), we can write $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}x_{1}+\frac{b}{a} x_{2} \\ x_{2}\end{array}\right]$ or $\vec{y}=\mathbf{L}^{T} \vec{x}$ where $\mathbf{L}^{T}:=\left[\begin{array}{ll}1 & \frac{b}{a} \\ 0 & 1\end{array}\right]$.

Substituting this into (3), we obtain: $\vec{y}^{T} \mathbf{D} \vec{y}=\left(\mathbf{L}^{T} \vec{x}\right)^{T} \mathbf{D}\left(\mathbf{L}^{T} \vec{x}\right)$

$$
\begin{equation*}
=\vec{x}^{T} \mathbf{L D L}^{T} \vec{x}=\vec{x}^{T} \mathbf{K} \vec{x} \text {, where } \mathbf{K}=\mathbf{L} \mathbf{D L}^{T} . \tag{4}
\end{equation*}
$$

In other words, given $q(\vec{x})$ (and therefore \mathbf{K}), you can complete the square by calculating the $\mathbf{L D L}^{T}$ decomposition of \mathbf{K}.
(D gives you the coefficients, and L gives you the squared quantities of (1))

A previous theorem says that regular symmetric matrices are precisely those that admit an $\mathbf{L D L}^{T}$ decomposition.
Therefore (4) is valid for all regular symmetric matrices.

This allows us to write a quadratic form as a sum of squares: $q(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}=\vec{y}^{T} \mathbf{D} \vec{y}=d_{1} y_{1}^{2}+\ldots+d_{n} y_{n}^{2}$, where $\vec{y}=\mathbf{L}^{T} \vec{x}$.

The d_{i} are the diagonal entries of \mathbf{D}, the pivots of \mathbf{K}. So:

Regular \& Symmetric $\Rightarrow \mathbf{L D L}^{T}$ factorable \Rightarrow "Complete the square-able"
"Complete the square-able" and $d_{i}>0 \Rightarrow$ Pos. def.

How about with more variable?

Theorem: Given a symmetric $\mathbf{K}^{n \times n}$, it is positive definite iff it is regular and has all positive pivots.

Proof: If upper left k_{11} (first pivot) is not strictly positive, \mathbf{K} cannot be positive definite because $q\left(\vec{e}_{1}\right)=\vec{e}_{1}^{T} \mathbf{K} \vec{e}_{1}=k_{11} \leq 0$.

Otherwise, suppose $k_{11}>0$. We can write: $q(\vec{x})=\vec{x}^{T} \mathbf{K} \vec{x}$

$$
\begin{aligned}
& =\left(k_{11} x_{1}^{2}+2 k_{12} x_{1} x_{2}+\ldots+2 k_{1 n} x_{1} x_{n}\right)+\ldots+\left(k_{22} x_{2}^{2}+2 k_{23} x_{2} x_{3}+\ldots+2 k_{2 n} x_{2} x_{n}\right)+\ldots+\left(2 k_{1 n} x_{1} x_{n}+\ldots+k_{n n} x_{n}^{2}\right) \\
& =k_{11}\left(x_{1}+\frac{k_{12}}{k_{11}} x_{2}+\ldots+\frac{k_{1 n}}{k_{11}} x_{n}\right)^{2}+\widetilde{q}\left(x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
\begin{equation*}
=k_{11}\left(x_{1}+\ell_{21} x_{2}+\ldots+\ell_{n 1} x_{n}\right)^{2}+\widetilde{q}\left(x_{2}, \ldots, x_{n}\right) . \tag{5}
\end{equation*}
$$

Claim: $q(\vec{x})$ is positive definite iff \widetilde{q} is positive definite. (must show both directions $\Leftarrow \& \Rightarrow$)
\Leftarrow Indeed, if \widetilde{q} is positive definite and $k_{11}>0$, then $q(\vec{x})$ is the sum of two positive quantities, which simultaneously vanish iff $x_{1}=x_{2}=\ldots=x_{n}=0$.
\Rightarrow Showing contrapositive, suppose $\widetilde{q}\left(x_{2}^{*}, \ldots, x_{n}^{*}\right) \leq 0$ for some $x_{2}^{*}, \ldots, x_{n}^{*}$, not all zero.

Setting $x_{1}^{*}=-\ell_{21} x_{2}^{*}-\ldots-\ell_{n 1} x_{n}^{*}$ makes the initial square term in (5) equal to zero,

$$
\text { so } q\left(x_{2}^{*}, \ldots, x_{n}^{*}\right)=\widetilde{q}\left(x_{2}^{*}, \ldots, x_{n}^{*}\right) \leq 0 .
$$

Cholesky Factorization is cool, but I won't test you on it.

