
Applied Linear Algebra

Instructor: Jodin Morey moreyjc@umn.edu

3.5 Completing the Square

Determining the Positive Definiteness of a Matrix

"Completing the square" has previously assisted you in deriving the quadratic formula,

and later for integrating various types of rational and algebraic functions.

Given: qx  ax2  2bx  c  0

qx  ax  b
a 

2  acb2
a  0.

As a result: x  b
a 

2  b2ac
a2

and x  b b2ac
a .

Similarly: given qx1,x2  ax1
2  2bx1x2  cx2

2, where a  0,

qx1,x2  ax1  b
a x2

2  acb2
a x2

2

 ay1
2  acb2

a y2
2, 1

where y1  x1  b
a x2 and y2  x2. 2

Expression 1 is positive definite in y1,y2 if a  0 and acb2
a  0.

This would mean, qx1,x2  0. We get equality iff

y1  y2  0  x1  x2  0.

Goal: Generalize to More Variables

Observe quadratic form qx1,x2 above can be rewriten as: x
T
Kx , where K  ??

K 
a b

b c
, x :

x1

x2
.



RHS of 1 can be written as qy  : y
T
Dy , 3

where D : 
a 0

0 acb2
a

, y :
y1

y2
.

From 2, we can write
y1

y2


x1  b
a x2

x2
or y  LT x where LT :

1 b
a

0 1
.

Substituting this into 3, we obtain: y
T
Dy  LT x 

T
DLT x 

 x
T
LDLT x  x

T
Kx , where K  LDLT. 4

In other words, given qx  (and therefore K), you can complete the square by calculating the LDLT decomposition of K.

(D gives you the coefficients, and L gives you the squared quantities of 1)

A previous theorem says that regular symmetric matrices are precisely those that admit an LDLT decomposition.
Therefore 4 is valid for all regular symmetric matrices.

This allows us to write a quadratic form as a sum of squares: qx   x
T
Kx  y

T
Dy  d1y1

2 dnyn2, where y  LT x .

The di are the diagonal entries of D, the pivots of K. So:

Regular & Symmetric  LDLT factorable  "Complete the square-able"

"Complete the square-able" and di  0  Pos. def.

How about with more variable?

Theorem: Given a symmetric Knn, it is positive definite iff it is regular and has all positive pivots.

Proof: If upper left k11 (first pivot) is not strictly positive, K cannot be positive definite because q e 1  e 1
T
Ke 1  k11  0.

Otherwise, suppose k11  0. We can write: qx   x
T
Kx

 k11x1
2  2k12x1x2 2k1nx1xn  k22x2

2  2k23x2x3 2k2nx2xn  2k1nx1xn knnxn2

 k11 x1 
k12
k11

x2  k1n
k11

xn
2
 qx2, ,xn



 k11x1  21x2 n1xn2 
qx2, ,xn. 5

Claim: qx  is positive definite iff q is positive definite. (must show both directions &)

 Indeed, if q is positive definite and k11  0, then qx  is the sum of two positive quantities,

which simultaneously vanish iff x1  x2  xn  0.

 Showing contrapositive, suppose qx2
, ,xn  0 for some x2

, ,xn, not all zero.

Setting x1
  21x2 n1xn makes the initial square term in 5 equal to zero,

so qx2
, ,xn 

qx2
, ,xn  0. 

Cholesky Factorization is cool, but I won’t test you on it.


