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3.4 Positive Definite Matrices

We’ve seen a lot of inner products, but is there a general form for them?

Let’s find out. Inner product must take in two vectors x , y , and produce a scalar.

Observe, we can always recharacterize x , y as x  x1
e 1  xn

e n   i1
n x i

e i, and

y  y1
e 1  yn

e n   i1
n y i

e i. (e.g., 2,1  2e 1  1
e 2)

And since every inner product must satisfy the axioms, observe that:

x , y    i1
n x i

e i, i1
n y i

e i   i,j1
n


e i,

e j x iy j.

(e.g., x , y   x1
e 1  x2

e 2, y1
e 1  y2

e 2  
e 1,

e 1 x1y1  
e 1,

e 2 x1y2  
e 2,

e 1 x2y1  
e 2,

e 2 x2y2)

Therefore, notating k ij : 
e i,

e j , we have: x , y    i,j1
n k ijx iy j  x

T
Ky , where K is a matrix of the k ij.

Definition: Any inner product can be expressed as a general bilinear form: x
T
Ky .

Let’s use inner product axioms to reveal these properties in bilinear forms.

Due to the symmetry of inner products, we see that k ij  
e i,

e j   
e j,

e i   k ji, therefore K  KT is symmetric.

Using this symmetry, we then find that: x , y   x
T
Ky  x

T
Ky

T
(because a constant is its own transpose)

 y
T
KT x  y

T
Kx  y , x .

Regarding positivity, observe: x
2
 x , x   x

T
Kx   i,j1

n k ijx ix j  0 for all x  Rn, with equality iff x  0.

Definition: Knn is positive definite if it is symmetric (KT  K), and satisfies positivity condition

x
T
Kx  0 for all 0  x  Rn. We sometimes write K  0 to mean K is a positive definite.



Therefore

Theorem: Every inner product on Rn is given by x , y   x
T
Ky for x , y  Rn and some positive definite Knn.

Definition: Given symmetric K (not necessarily arising from an inner product), the homogeneous quadratic polynomial

qx    i,j1
n k ijx ix j is called a quadratic form on Rn. The quadratic form is called positive definite if

qx   0 for all 0  x  Rn. In other words, q is positive definite iff K is.

Definition: More generally, a quadratic form and its associated symmetric K are called positive semi-definite if

qx   x
T
Kx  0 for all x  Rn (also written K  0).

Observe that a positive semidefinite matrix implies the possibility of null directions.

That is, nonzero vectors z such that q z   z
T
K z  0.

A positive definite matrix is not allowed null directions, kerK  0 , therefore:

Proposition: If a matrix is positive definite, then it is nonsingular.

Even though K 
4 2

2 3
has two negative entries, it is positive definite.

qx   x
T
Kx  4x1

2  4x1x2  3x2
2

 2x1  x22  2x2
2  0.

It can be shown from analytic geometry that ax1
2  2bx1x2  cx2

2  0 iff

a  0 and ac  b2  0 (positive leading coefficient & positive determinant).

See evidence for this in book.

Reading the matrixK directly from a quadratic form.
If given a quadratic form: ax2  bxy  cy2, K’s diagonal entries are the coefficients of the associated squared terms.

For mixed terms, split their coefficients in half. These appear in their respective spots in the matrix. For example, the

above quadratic form would have K 
a b

2

b
2 c

. This generalizes to quadratic forms with more variables.



Example: Is K 
5 3

3 2
positive definite? If so, write down the formula for the associated inner product.

|K| 
5 3

3 2
 10  9   19. So not positive definite.

Example: Is K 
1 0

0 2
positive definite? If so, write down the formula for the associated inner product.

|K| 
1 0

0 2
 2, and a11  1  0, so positive definite.

x , y   x
T
Ky  x1 x2

1 0

0 2

y1

y2
 x1y1  2x2y2.

Gram Matrices

Definition: Let V be an inner product space, and let v 1, , v n  V (not neccesarily n).

The associated Gram matrix K 

v 1, v 1  v 1, v 2   v 1, v n 

v 2, v 1  v 2, v 2   v 2, v n 

   

v n, v 1  v n, v 2   v n, v n 

 

is the n  n matrix whose entries are the inner products between the v i.

Symmetry of the inner product implies symmetry of the Gram matrix:

k ij  v i, v j   v j, v i   k ji, and hence KT  K.

Theorem: All Gram matrices are positive semi-definite.

The Gram matrix   is positive definite iff inner product elements v 1, , v n are linearly independent.

Proof: To prove positive (semi-) definiteness of K, we need to examine the associated quadratic form:

qx   x
T
Kx   i,j1

n k ijx ix j   i,j1
n

v i, v j x ix j.

Bilinearity implies we can assemble this summation into a single inner product:

qx    i1
n x i v i,  j1

n x j v j . . .



 w,w  w
2  0, where w   i1

n x i v i.

This proves K is positive semidefinite.

Moreover, qx   w
2
 0 as long as w  0. ....

For positive definite need to show: v 1, , v n are independent iff qx   0 only when x  0.

If v 1, , v n are independent, then w  x1 v 1 xn v n  ??

 0 iff x1  xn  0,

and hence qx   0 iff x  0.

This implies that qx  and hence K are positive definite. 

Example: Calculate Gram matrix for v 1 : 1,2,1 and v 2 : 3,0,6 using Euclidean inner product.

Verify positive definiteness of matrix with its bilinear form.

K 
v 1  v 1 v 1  v 2

v 2  v 1 v 2  v 2


6 3

3 45
.

qx1,x2  6x1
2  6x1x2  45x2

2.

Also, due to a  0 & ac  b2  0, so K  0.

Also, observe v 1, v 2 are linearly independent, so K  0.

Example: Construct the Gram matrix corresponding to fx  1, gx  x, and hx  x2 in C00,1 with the L2 inner product.

1,1  |1|2  
0

1
dx  1. 1,x  

0

1
xdx  1

2 . 1,x2   
0

1
x2dx  1

3 . x,x  |x|2  
0

1
x2dx  1

3 .

x,x2   
0

1
x3dx  1

4 . x2,x2   |x2 |2  
0

1
x4dx  1

5 .



Therefore: K 

1,1 1,x 1,x2 

1,x x,x x,x2 

1,x2  x,x2  x2,x2 



1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

.

And since the monomial functions 1,x,x2 are linearly independent, K  0.

One can calculate a Gram matrix using a weighted inner product.

Choice of inner product doesn’t change independence of vectors. So new Gram matrix will still be positive definite.

Gram Matrix Decomposition
Note that if we define A : v 1  v n , then K  ATA.

Example: If A :

1 3

2 0

1 0

, then with Euclidean inner product,

K  ATA 
1 2 1

3 0 0

1 3

2 0

1 0


v 1

v 2
v 1 v 2 

v 1, v 1  v 1, v 2 

v 2, v 1  v 2, v 2 


6 3

3 9
, where v 1  1,2,1 and v 2  3,0,0.

Proposition: Given Amn, the following are equivalent:

 n  n Gram matrix K  ATA is positive definite.

 A has linearly independent columns. (by thm above)

 rankA  n  m.

 kerA  0.

How can we use ATA technique on other (non-Euclidean) inner products?

Recall every inner product has form v ,w  v
T
Cw, where C  0 is symmetric, positive definite.

Therefore, given v 1, , v n, the entries of the Gram matrix will be: k ij  v i, v j   v i
T
Cv j.

In other words, K  ATCA, where A  v 1  v n . Therefore:



Theorem: Suppose Amn has linearly independent columns. Suppose Cmm is any positive definite matrix.

Then, the Gram matrix Knn  ATCA is a positive definite matrix.

Proposition: Let Knn  ATCA be the Gram matrix constructed from Amn and Cmm  0.

Then, kerK  kerA, and hence rankK  rankA.

Proof: Clearly, if Ax  0, then Kx  ATCAx  0, and so kerA  kerK.

Conversely, if Kx  0, then 0  x
T
Kx  x

T
ATCAx  y

T
Cy , where y  Ax .

Since C  0, this implies y  0, and hence x  kerA. So, kerK  kerA and kerK kerA.

Finally, by a previous theorem, rankK  n  dim kerK  n  dim kerA  rankA. 


