3.2 Cauchy-Schwarz and Triangle Inequalities

There are two basic inequalities that are valid for any inner product space: Cauchy-Schwarz and the Triangle Inequality.

The Cauchy-Schwarz Inequality

Recall: Dot product of any two $\vec{v}, \vec{w} \in \mathbb{R}^{n}$ is: $\vec{v} \cdot \vec{w}=|\vec{v}||\vec{w}| \cos \theta$.

And since $|\cos \theta| \leq 1$, we have $|\vec{v} \cdot \vec{w}| \leq|\vec{v}||\vec{w}|$.

More generally:
Theorem: Every inner product satisfies the Cauchy Schwartz inequality: $|\langle\vec{v}, \vec{w}\rangle| \leq|\vec{v}||\vec{w}|$, for all $\vec{v}, \vec{w} \in V$.

Here, the meaning of $|\cdot|$ is contextual. If \cdot is a vector, then $|\cdot|$ means the associated norm.
If \cdot is a scalar, then $|\cdot|$ means the absolute value.

Proof: The case when $\vec{w}=\overrightarrow{0}$ is trivial, since both sides of the inequality are equal to zero.
Thus, we concentrate on the case when $\vec{w} \neq \overrightarrow{0}$.

Let $t \in \mathbb{R}$. Using the three inner product axioms, we have:

$$
\begin{align*}
& 0 \leq|\vec{v}+t \vec{w}|^{2} \\
&=\langle\vec{v}+t \vec{w}, \vec{v}+t \vec{w}\rangle=\langle\vec{v}, \vec{v}\rangle+2 t\langle\vec{v}, \vec{w}\rangle+t^{2}\langle\vec{w}, \vec{w}\rangle \\
&=|\vec{v}|^{2}+2 t\langle\vec{v}, \vec{w}\rangle+t^{2}|\vec{w}|^{2}, \tag{*}
\end{align*}
$$

with inequality holding iff $\vec{v}=-t \vec{w}$, which requires \vec{v}, \vec{w} to be parallel.

Now, we fix \vec{v}, \vec{w}, and consider $(*)$ as a quadratic function of t.

So, $0 \leq p(t):=a t^{2}+2 b t+c$, where $a=|\vec{w}|^{2}, \quad b=\langle\vec{v}, \vec{w}\rangle, \quad c=|\vec{v}|^{2}$.

To get the most out of the fact that $p(t) \geq 0$, let us look at where it assumes its minimum, which occurs when its derivative is 0 :

$$
p^{\prime}(t)=2 a t+2 b=0, \quad \text { and so } \quad t=-\frac{b}{a}=-\frac{\langle\vec{v}, \vec{w}\rangle}{|\vec{w}|^{2}} .
$$

Substituting this particular value of t into $(*)$, we obtain: $0 \leq|\vec{v}|^{2}-2 \frac{\langle\vec{v}, \vec{v}\rangle^{2}}{|\vec{w}|^{2}}+\frac{\langle\vec{v}, \vec{w}\rangle^{2}}{|\vec{w}|^{2}}=|\vec{v}|^{2}-\frac{\langle\vec{v}, \vec{w}\rangle^{2}}{|\vec{w}|^{2}}$.

Rearranging this last inequality, we conclude that: $\frac{\langle\vec{v} \vec{w}\rangle^{2}}{|\vec{w}|^{2}} \leq|\vec{v}|^{2}, \quad$ or $\quad\langle\vec{v}, \vec{w}\rangle^{2} \leq|\vec{v}|^{2}|\vec{w}|^{2} . \quad(* *)$

Also, as noted above, equality holds iff $\vec{v} \| \vec{w}$.

Equality also holds when $\vec{w}=0$, which is of course parallel to every vector \vec{v}.

Taking the (positive) square root of $(* *)$ completes the proof.

Recall the dot product in $\mathbb{R}^{n}\left(\cos \theta=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}\right)$, can be used to define the angle θ between $\vec{v}, \vec{w} \in V$.

Similarly, we can define the "angle" between more general vector space element $\vec{v}, \vec{w} \in V$ with: $\cos \theta=\frac{\langle\vec{v}, \vec{w}\rangle}{|\vec{v}||\vec{w}|}$.

For Instance: With L^{2} inner product on $[0,1]$, the "angle" θ between polynomial $p(x)=x$ and $q(x)=x^{2}$ is given by:

$$
\begin{aligned}
\cos \theta & =\frac{\left\langle x, x^{2}\right\rangle}{|x| x^{2} \mid} \\
& =\frac{\int_{0}^{1} x^{3} d x}{\sqrt{\int_{0}^{1} x^{2} d x} \sqrt{\int_{0}^{1} x^{4} d x}} \\
& =\frac{\frac{1}{4}}{\sqrt{\frac{1}{3}} \sqrt{\frac{1}{5}}}=\sqrt{\frac{15}{16}}, \text { so that } \theta=\cos ^{-1} \sqrt{\frac{15}{16}}=0.25268 \ldots \text { radians. }
\end{aligned}
$$

Orthogonal Vectors

Recall in \mathbb{R}^{n}, vectors \vec{v}, \vec{w} are orthogonal (perpendicular) if their dot product (inner product) is zero.

Like angle, we can generalize this to any inner product space:
Definition: Two elements $\vec{v}, \vec{w} \in V$ of an inner product space V are called orthogonal if their inner product vanishes: $\langle\vec{v}, \vec{w}\rangle=0$.

In particular, $\overrightarrow{0}$ is orthogonal to every other element \vec{v} in an inner product space.

For Instance: $\vec{v}=(1,2)$ and $\vec{w}=(6,-3)$ are orthogonal with respect to the Euclidean dot product in \mathbb{R}^{2}.

However, if we have the weighted inner product: $\langle\vec{v}, \vec{w}\rangle=2 v_{1} w_{1}+5 v_{2} w_{2}$,
then observe: $\langle\vec{v}, \vec{w}\rangle=(2 \cdot 1 \cdot 6)+(5 \cdot 2 \cdot(-3))=-18 \neq 0$.

Therefore, \vec{v}, \vec{w} are not orthogonal in this weighted inner product.

Example: Show polynomials $p(x)=x$ and $q(x)=x^{2}-\frac{1}{2}$ are orthogonal with to respect to inner product:

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x \text { on }[0,1] .
$$

$$
\left\langle x, x^{2}-\frac{1}{2}\right\rangle=\int_{0}^{1} x\left(x^{2}-\frac{1}{2}\right) d x=\int_{0}^{1}\left(x^{3}-\frac{1}{2} x\right) d x=0
$$

But if we switch the interval to $[0,2]$, in this new inner product space, they are not orthogonal:

$$
\left\langle x, x^{2}-\frac{1}{2}\right\rangle=\ldots=\int_{0}^{2}\left(x^{3}-\frac{1}{2} x\right) d x=3 .
$$

The Triangle Inequality

Theorem: The norm associated with an inner product satisfies the Triangle Inequality: $|\vec{v}+\vec{w}| \leq|\vec{v}|+|\vec{w}|$ for all $\vec{v}, \vec{w} \in V$. Equality holds iff \vec{v}, \vec{w} are parallel vectors.

Proof: $|\vec{v}+\vec{w}|^{2}=\langle\vec{v}+\vec{w}, \vec{v}+\vec{w}\rangle=|\vec{v}|^{2}+2\langle\vec{v}, \vec{w}\rangle+|\vec{w}|^{2}$

$$
\begin{aligned}
& \leq|\vec{v}|^{2}+2|\vec{v}||\vec{w}|+|\vec{w}|^{2} \quad \text { (Cauchy Schwartz, see exercise 3.2.11) } \\
& =(|\vec{v}|+|\vec{w}|)^{2}
\end{aligned}
$$

Take square roots of both sides. Since both expressions are positive, this completes the proof.

Example: Verify triangle inequality with: $\vec{v}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right], \vec{w}=\left[\begin{array}{c}2 \\ 0 \\ 3\end{array}\right]$, and Euclidean norm.
The vectors sum to $\vec{v}+\vec{w}=\left[\begin{array}{l}3 \\ 2 \\ 2\end{array}\right]$.

Their Euclidean norms are $|\vec{v}|=\sqrt{6}$ and $|\vec{w}|=\sqrt{13}$, while $|\vec{v}+\vec{w}|=\sqrt{17}$.

Triangle Inequality says: $4.1231 \approx \sqrt{17} \leq \sqrt{6}+\sqrt{13} \approx 6.055$. True!

Example: Verify triangle inequality with L^{2} norm on the interval [0,1] with functions: $f(x)=x-1$ and $g(x)=x^{2}+1$.
$|f|=\sqrt{\int_{0}^{1}(x-1)^{2} d x}=\sqrt{\frac{1}{3}}, \quad|g|=\sqrt{\int_{0}^{1}\left(x^{2}+1\right)^{2} d x}=\sqrt{\frac{28}{15}}$,
$|f+g|=\sqrt{\int_{0}^{1}\left(x^{2}+x\right)^{2} d x}=\sqrt{\frac{31}{30}}$.

Triangle Inequality says: $1.0165 \approx \sqrt{\frac{31}{30}} \leq \sqrt{\frac{1}{3}}+\sqrt{\frac{28}{15}} \approx 1.9436$.

