3.2 Cauchy-Schwarz and Triangle Inequalities

There are two basic inequalities that are valid for any inner product space: Cauchy-Schwarz and the Triangle Inequality.

The Cauchy-Schwarz Inequality

Recall: Dot product of any two $\vec{v}, \vec{w} \in \mathbb{R}^n$ is: $\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta$.

And since $|\cos \theta| \le 1$, we have $|\vec{v} \cdot \vec{w}| \le |\vec{v}| |\vec{w}|$.

More generally:

Theorem: Every inner product satisfies the Cauchy Schwartz inequality: $|\langle \vec{v}, \vec{w} \rangle| \leq |\vec{v}| |\vec{w}|$, for all $\vec{v}, \vec{w} \in V$.

Here, the meaning of $|\cdot|$ is contextual. If \cdot is a vector, then $|\cdot|$ means the associated norm. If \cdot is a scalar, then $|\cdot|$ means the absolute value.

Proof: The case when $\vec{w} = \vec{0}$ is trivial, since both sides of the inequality are equal to zero.

Thus, we concentrate on the case when $\vec{w} \neq \vec{0}$.

Let $t \in \mathbb{R}$. Using the three inner product axioms, we have: $0 \le |\vec{v} + t\vec{w}|^2$ (positivity)

 $= \langle \vec{v} + t\vec{w}, \vec{v} + t\vec{w} \rangle = \langle \vec{v}, \vec{v} \rangle + 2t \langle \vec{v}, \vec{w} \rangle + t^2 \langle \vec{w}, \vec{w} \rangle$ (bilinearity & symmetry)

 $= |\vec{v}|^{2} + 2t\langle \vec{v}, \vec{w} \rangle + t^{2} |\vec{w}|^{2}, \quad (*)$ with inequality holding **iff** $\vec{v} = -t\vec{w}$, which requires \vec{v}, \vec{w} to be parallel.

Now, we fix \vec{v}, \vec{w} , and consider (*) as a quadratic function of *t*.

So,
$$0 \le p(t) := at^2 + 2bt + c$$
, where $a = |\vec{w}|^2$, $b = \langle \vec{v}, \vec{w} \rangle$, $c = |\vec{v}|^2$.

To get the most out of the fact that $p(t) \ge 0$, let us look at where it assumes its minimum,

which occurs when its derivative is 0:

$$p'(t) = 2at + 2b = 0$$
, and so $t = -\frac{b}{a} = -\frac{\langle \vec{v}, \vec{w} \rangle}{|\vec{w}|^2}$.

Substituting this particular value of *t* into (*), we obtain: $0 \le |\vec{v}|^2 - 2\frac{\langle \vec{v}, \vec{w} \rangle^2}{|\vec{w}|^2} + \frac{\langle \vec{v}, \vec{w} \rangle^2}{|\vec{w}|^2} = |\vec{v}|^2 - \frac{\langle \vec{v}, \vec{w} \rangle^2}{|\vec{w}|^2}$.

Rearranging this last inequality, we conclude that: $\frac{\langle \vec{v}, \vec{w} \rangle^2}{|\vec{w}|^2} \le |\vec{v}|^2$, or $\langle \vec{v}, \vec{w} \rangle^2 \le |\vec{v}|^2 |\vec{w}|^2$. (**)

Also, as noted above, equality holds iff $\vec{v} \parallel \vec{w}$.

 $\cos\theta = \frac{\langle x, x^2 \rangle}{|x| |x^2|}$

Equality also holds when $\vec{w} = 0$, which is of course parallel to every vector \vec{v} .

Taking the (positive) square root of (* *) completes the proof.

Recall the dot product in \mathbb{R}^n ($\cos \theta = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|}$), can be used to define the angle θ between $\vec{v}, \vec{w} \in V$.

Similarly, we can define the "angle" between more general vector space element $\vec{v}, \vec{w} \in V$ with: $\cos \theta = \frac{\langle \vec{v}, \vec{w} \rangle}{|\vec{v}| |\vec{w}|}$.

For Instance: With L^2 inner product on [0, 1], the "angle" θ between polynomial p(x) = x and $q(x) = x^2$ is given by:

$$= \frac{\int_{0}^{1} x^{3} dx}{\sqrt{\int_{0}^{1} x^{2} dx} \sqrt{\int_{0}^{1} x^{4} dx}}$$
$$= \frac{\frac{1}{4}}{\sqrt{\frac{1}{3}} \sqrt{\frac{1}{5}}} = \sqrt{\frac{15}{16}}, \text{ so that } \theta = \cos^{-1} \sqrt{\frac{15}{16}} = 0.25268... \text{ radians.}$$

Orthogonal Vectors

Recall in \mathbb{R}^n , vectors \vec{v}, \vec{w} are orthogonal (perpendicular) if their dot product (inner product) is zero.

Like angle, we can generalize this to any inner product space: **Definition**: Two elements $\vec{v}, \vec{w} \in V$ of an inner product space V are called orthogonal if their inner product vanishes: $\langle \vec{v}, \vec{w} \rangle = 0$.

In particular, $\vec{0}$ is orthogonal to every other element \vec{v} in an inner product space.

For Instance: $\vec{v} = (1,2)$ and $\vec{w} = (6,-3)$ are orthogonal with respect to the Euclidean dot product in \mathbb{R}^2 .

e.g., in \mathbb{R}^2

However, if we have the weighted inner product: $\langle \vec{v}, \vec{w} \rangle = 2v_1w_1 + 5v_2w_2$,

then observe: $\langle \vec{v}, \vec{w} \rangle = (2 \cdot 1 \cdot 6) + (5 \cdot 2 \cdot (-3)) = -18 \neq 0.$

Therefore, \vec{v}, \vec{w} are not orthogonal in this weighted inner product.

Example: Show polynomials p(x) = x and $q(x) = x^2 - \frac{1}{2}$ are orthogonal with to respect to inner product: $\langle p,q \rangle = \int_0^1 p(x)q(x)dx$ on [0,1].

$$\langle x, x^2 - \frac{1}{2} \rangle = \int_0^1 x \left(x^2 - \frac{1}{2} \right) dx = \int_0^1 \left(x^3 - \frac{1}{2} x \right) dx = 0$$

But if we switch the interval to [0,2], in this new inner product space, they are **not** orthogonal:

$$\langle x, x^2 - \frac{1}{2} \rangle = \dots = \int_0^2 (x^3 - \frac{1}{2}x) dx = 3.$$

The Triangle Inequality

Theorem: The norm associated with an inner product satisfies the **Triangle Inequality**: $|\vec{v} + \vec{w}| \leq |\vec{v}| + |\vec{w}|$ for all $\vec{v}, \vec{w} \in V$. Equality holds **iff** \vec{v}, \vec{w} are parallel vectors.

Proof: $\left| \vec{v} + \vec{w} \right|^2 = \left\langle \vec{v} + \vec{w}, \vec{v} + \vec{w} \right\rangle = \left| \vec{v} \right|^2 + 2\langle \vec{v}, \vec{w} \rangle + \left| \vec{w} \right|^2$

(bilinearity & symmetry)

$$\leq |\vec{v}|^{2} + 2|\vec{v}| |\vec{w}| + |\vec{w}|^{2}$$
 (Cauchy Schwartz, see exercise 3.2.11)

$$= \left(\left|\vec{v}\right| + \left|\vec{w}\right|\right)^2.$$

Take square roots of both sides. Since both expressions are positive, this completes the proof.

Example: Verify triangle inequality with: $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$, and Euclidean norm. The vectors sum to $\vec{v} + \vec{w} = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$.

Their Euclidean norms are $|\vec{v}| = \sqrt{6}$ and $|\vec{w}| = \sqrt{13}$, while $|\vec{v} + \vec{w}| = \sqrt{17}$.

Triangle Inequality says: 4.1231 $\approx \sqrt{17} \leq \sqrt{6} + \sqrt{13} \approx 6.055$. True!

Example: Verify triangle inequality with L^2 norm on the interval [0, 1] with functions: f(x) = x - 1 and $g(x) = x^2 + 1$.

$$|f| = \sqrt{\int_0^1 (x-1)^2 dx} = \sqrt{\frac{1}{3}}, \qquad |g| = \sqrt{\int_0^1 (x^2+1)^2 dx} = \sqrt{\frac{28}{15}},$$
$$|f+g| = \sqrt{\int_0^1 (x^2+x)^2 dx} = \sqrt{\frac{31}{30}}.$$

Triangle Inequality says: 1.0165 $\approx \sqrt{\frac{31}{30}} \leq \sqrt{\frac{1}{3}} + \sqrt{\frac{28}{15}} \approx 1.9436.$