2.5 The Fundamental Matrix Subspaces

Definition: The **image** (or **column space** or **range**) of an $m \times n$ matrix **A** is the subspace: $img \mathbf{A} \subset \mathbb{R}^m$ spanned by its columns.

$$img \mathbf{A} = span\{cols \mathbf{A}\} \subseteq \mathbb{R}^{m}$$
$$= \left\{ b \in \mathbb{R}^{m} | b = a_{1}c_{1} + \dots + a_{n}c_{n} \text{ where } a_{i} \in \mathbb{R}, \text{ and } c_{i} \text{ are columns of } \mathbf{A} \right\}$$
$$= \left\{ b \in \mathbb{R}^{m} | \mathbf{A}\vec{c} = \vec{b} \text{ has a solution} \right\}.$$

Definition: The *kernel of A* is the subspace ker $\mathbf{A} \subset \mathbb{R}^n$ consisting of all vectors that are *annihilated* by \mathbf{A} ,

so ker
$$\mathbf{A} = \left\{ z \in \mathbb{R}^n | \mathbf{A} \vec{z} = \vec{0} \right\} \subset \mathbb{R}^n.$$

Example:
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix}$$
 $(m = 2, n = 3)$
 $img \mathbf{A} = span \left\{ \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ -4 \end{bmatrix} \right\}$

Note: This is not a basis, as columns are dependent:

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} = -1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$
 (in fact, all columns parallel)
Row reduced: $\rightarrow \begin{bmatrix} 1 & -2 & 2 \\ 0 & 0 & 0 \end{bmatrix} = \mathbf{U}.$
So: *img* **A** is one-dimensional, with basis
$$\begin{bmatrix} 1 \\ -2 \end{bmatrix}.$$

In general: A basis for *img* **A** is given by the columns of **A** with pivots.

So: dim $img \mathbf{A} = # \operatorname{cols} with pivots = rank \mathbf{A}$.

Caution: The columns of U with pivots are not a basis for *img* A, and usually don't belong to *img* A.

For example: $\begin{bmatrix} 1\\ 0 \end{bmatrix}$ in the previous example.

Remark: If **A** is an $m \times n$ matrix: ker **A** lives in \mathbb{R}^n and *img* **A** lives in \mathbb{R}^m .

Observe: # cols with pivots is dim *img* **A**.

#cols without pivots is dim ker A.

Conclude:

Rank-Nullity Theorem: Let A be an $m \times n$ matrix. Then $n = \dim img \mathbf{A} + \dim \ker \mathbf{A} = rank \mathbf{A} + nullity \mathbf{A}$.

Intuitively: the input is *m*-dimensional.

Each of *m* dimensions is either killed off (goes to $\vec{0}$), or survives to the image.

Example: $A^{5\times7}$ of rank 3 has dim ker A = ??

[see animation in class]

 $\mathbf{A}^{6\times 8}$ with dim ker $\mathbf{A} = 2$ has rank 6.

Example:
$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ -3 & 6 & -9 \\ -2 & 4 & -6 \\ 3 & 0 & -1 \end{bmatrix}$$

 $\rightarrow \begin{bmatrix} 1 & -2 & 3 \\ 0 & 6 & -10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

So first and second cols have pivots.

Thus,
$$\begin{bmatrix} 1\\ -3\\ -2\\ 3 \end{bmatrix}$$
, $\begin{bmatrix} -2\\ 6\\ 4\\ 0 \end{bmatrix}$ is a basis for *img* **A**, which is two-dimensional subspace of \mathbb{R}^4 .

One-dimensional kernel of \mathbb{R}^3 .

Finding General Solutions

Fix A and \vec{b} , and suppose there are two solutions: $A\vec{x} = \vec{b}$ and $A\vec{y} = \vec{b}$.

Then their difference $\vec{z} = \vec{x} - \vec{y}$ satisfies: $A\vec{z} = A(\vec{x} - \vec{y}) = A\vec{x} - A\vec{y} = \vec{b} - \vec{b} = \vec{0}$.

Conclude: The difference of two solutions \vec{z} is in the kernel of A.

And, every solution \vec{x} can be written as $\vec{x} = \vec{y} + \vec{z}$, for any given solution \vec{y} and an element \vec{z} of the kernel.

Thus, if we know:

- ker A, and
- a single solution \vec{x}^* to $A\vec{x} = \vec{b}$,
- then we can find all solutions (!!).

Theorem: Suppose x^* is a solution to $A\vec{x} = \vec{b}$. Then, all other solutions are of the form: $x^* + z$, where $z \in \ker A$.

Example: Let
$$\mathbf{A} := \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & -1 \\ 1 & -2 & 3 \end{bmatrix}$$
 and $\vec{b} := \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$.
Row reduce $\begin{bmatrix} \mathbf{A} | \vec{b} \end{bmatrix}$ to get: $\begin{bmatrix} 1 & 0 & -1 & | & 3 \\ 0 & 1 & -2 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$.

Note
$$c_3$$
 is free. So, if we set $c_3 = 0$, we find $c_1 = 3$ and $c_2 = 1$.

So,
$$x^* = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 is one solution.

Next, find kernel. General solution to $\overrightarrow{Ac} = \overrightarrow{0}$.

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = c_3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

So, ker $\mathbf{A} = span \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\}.$

Thus, *all* solutions to $\mathbf{A}\vec{x} = \vec{b}$ are of the form $\begin{vmatrix} 3 \\ 1 \\ 0 \end{vmatrix} + c \begin{vmatrix} 1 \\ 2 \\ 1 \end{vmatrix}$. This is the "general solution."

Example: Let $\mathbf{A} := \begin{bmatrix} 2 & -1 & 5 \end{bmatrix}$ and $\mathbf{A}\vec{x} = 6$. Find general solution.

ker A = (vectors perp. to $\begin{bmatrix} 2 & -1 & 5 \end{bmatrix}$) = (plane defined by 2x - y + 5z = 0)

Observe A already reduced with c_2, c_3 free.

$$\ker \mathbf{A} = span \left\{ \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{5}{2} \\ 0 \\ 1 \end{bmatrix} \right\}.$$

One solution to $A\vec{x} = 6$ is ??

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}.$$

So, general solution is $\begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 3 \\ 0 \\ 0 \end{vmatrix} + a \begin{vmatrix} \frac{1}{2} \\ 1 \\ 0 \end{vmatrix} + b \begin{vmatrix} -\frac{5}{2} \\ 0 \\ 1 \end{vmatrix}$.

Example: Let $\mathbf{A} := \begin{bmatrix} 1 & -2 & 0 \\ 2 & 3 & 1 \end{bmatrix}$, $\vec{b} := \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. Find general solution.

Row reduce: $\begin{bmatrix} \mathbf{A} | \vec{b} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & | & 3 \\ 0 & 7 & 1 & | & -7 \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} 1 & 0 & \frac{2}{7} & | & 1 \\ 0 & 1 & \frac{1}{7} & | & -1 \end{bmatrix}$. (one solution?)

So, c_3 free. If $c_3 = 0$, then $c_1 = 1$ and $c_2 = -1$.

So one solution is: $\vec{x}^* = \begin{vmatrix} 1 \\ -1 \\ 0 \end{vmatrix}$.

Next, find ker A. General solution to $\overrightarrow{Ac} = \overrightarrow{0}$.

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = c_3 \begin{bmatrix} -\frac{2}{7} \\ -\frac{1}{7} \\ 1 \end{bmatrix}.$$

Thus, general solution to $\overrightarrow{\mathbf{Ac}} = \overrightarrow{b}$ is: $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} -\frac{2}{7} \\ -\frac{1}{7} \\ 1 \end{bmatrix}$.

Example: Characterize the image and kernel of $\begin{bmatrix} 1 & -1 & 2 \\ -2 & 2 & -4 \end{bmatrix}$.

Example: Characterize the image and kernel of

$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & -1 \\ 1 & -2 & 1 & 1 \\ 1 & 2 & -3 & 1 \end{bmatrix}.$$

Proposition: Given $A^{m \times n}$, the following conditions are equivalent:

- ker $\mathbf{A} = {\vec{0}}$, i.e., the homogeneous system $\mathbf{A}\vec{x} = \vec{0}$ has the unique solution $\vec{x} = \vec{0}$.
- \mathbf{i} rank $\mathbf{A} = n$.
- $\overrightarrow{Ax} = \overrightarrow{b}$ has no free variables.
- $\mathbf{A}\vec{x} = \vec{b}$ has a unique solution for each $\vec{b} \in img\mathbf{A}$.

Proposition: Given $A^{n \times n}$ (square), the following conditions are equivalent:

- ♦ A is nonsingular.
- \mathbf{i} rank $\mathbf{A} = n$.
- ker $\mathbf{A} = \left\{ \overrightarrow{0} \right\}$
- $img \mathbf{A} = \mathbb{R}^n$.

The Superposition Principal

For homogeneous systems $\mathbf{A}\vec{x} = \vec{0}$, superposition allows one to generate new solutions by combining known solutions. For inhomogeneous systems $\mathbf{A}\vec{x} = \vec{b}$, superposition combines the solutions corresponding to different inhomogeneities \vec{b}_i .

In physical applications, the inhomogeneities typically represent external forces \vec{f} , and solutions \vec{x} represent the responses of the physical apparatus. The linear superposition principle says that if we know how the system responds to the *individual* forces $(\vec{f}, \vec{g}, \text{ etc.})$, we immediately know it's response to any combination thereof.

Suppose \vec{x}_1^*, \vec{x}_2^* are solutions to two inhomogeneous systems, $A\vec{x} = \vec{b}_1$, and $A\vec{x} = \vec{b}_2$, respectively (with the same coefficient matrix A).

Consider the system $\mathbf{A}\vec{x} = c_1\vec{b}_1 + c_2\vec{b}_2$, where the RHS is a superposition of the previous two.

Then a particular solution to the combined system is given by the same superposition of the previous solutions: $\vec{x}^* = c_1 \vec{x}_1^* + c_2 \vec{x}_2^*.$

Proof:
$$\mathbf{A}\vec{x}^* = \mathbf{A}(c_1\vec{x}_1^* + c_2\vec{x}_2^*) = c_1\mathbf{A}\vec{x}_1^* + c_2\mathbf{A}\vec{x}_2^* = c_1\vec{b}_1 + c_2\vec{b}_2.$$

Spring-Mass Set-up

Example: The system: $\begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$ models the mechanical response of a pair of masses

connected by springs, subject to external forcing $\vec{f} \in \mathbb{R}^2$ (constant acceleration).

Solution $\vec{x} = (x_1, x_2)^T$ represents displacements of masses, while entries of RHS $\vec{f} = (f_1, f_2)$ are applied forces.

We can directly determine the response of the system $\vec{x}_1^* = \left(\frac{4}{15}, -\frac{1}{15}\right)$ to a unit force $\hat{e}_1 = (1,0)$ on the first mass, and the response $\vec{x}_2^* = \left(-\frac{1}{15}, \frac{4}{15}\right)$ to a unit force $\hat{e}_2 = (0, 1)$ on the second mass.

Superposition now gives response \vec{x} of system to *any* general force \vec{f} since:

$$\vec{f} = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = f_1 \hat{e}_1 + f_2 \hat{e}_2 = f_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} + f_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \text{ and hence}$$
$$\vec{x} = f_1 \vec{x}_1^* + f_2 \vec{x}_2^* = f_1 \begin{bmatrix} \frac{4}{15} \\ -\frac{1}{15} \end{bmatrix} + f_2 \begin{bmatrix} -\frac{1}{15} \\ \frac{4}{15} \end{bmatrix} = \begin{bmatrix} \frac{4}{15} f_1 - \frac{1}{15} f_2 \\ -\frac{1}{15} f_1 + \frac{4}{15} f_2 \end{bmatrix}$$

Theorem: Suppose that $\vec{x}_1^*, \dots, \vec{x}_k^*$ are particular solutions to each of the inhomogeneous linear systems $A\vec{x} = \vec{b}_1, \quad A\vec{x} = \vec{b}_2, \quad \dots \quad A\vec{x} = \vec{b}_k$, all having the same coefficient matrix **A**, and where $\vec{b}_1, \dots, \vec{b}_k \in img \mathbf{A}$. Then, for any choice of scalars c_1, \dots, c_k , a particular solution to the combined system $A\vec{x} = c_1\vec{b}_1 + \dots + c_k\vec{b}_k$ (*) is the corresponding superposition: $\vec{x}^* = c_1\vec{x}_1^* + \dots + c_k\vec{x}_k^*$ of individual solutions. The general solution to (*) is $\vec{x} = \vec{x}^* + \vec{z} = c_1\vec{x}_1^* + \dots + c_k\vec{x}_k^* + \vec{z}$, where $\vec{z} \in \ker \mathbf{A}$ is the general solution to the homogeneous system $A\vec{z} = \vec{0}$.

Therefore, if we know particular solutions $\vec{x}_1^*, \dots, \vec{x}_m^*$ to $A\vec{x} = \hat{e}_i$ for each $i = 1, \dots, m$, then we can reconstruct a

particular solution \vec{x}^* to the general linear system $\mathbf{A}\vec{x} = \vec{b}$, by first writing: $\vec{b} := b_1\hat{e}_1 + \ldots + b_m\hat{e}_m$

as a linear combination of the basis vectors, and then using superposition to form $\vec{x}^* = b_1 \vec{x}_1^* + ... + b_m \vec{x}_m^*$

Example: Find a solution \vec{x}_1^* to the system $\begin{vmatrix} 1 & 2 \\ -3 & 4 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$, and a solution \vec{x}_2^* to $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Express the solution to $\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ as a linear combination of \vec{x}_1^* and \vec{x}_2^* . $\begin{bmatrix} 1 & 2 & | & 1 & 0 \\ -3 & 4 & | & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 10 & | & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & 1 & 0 \\ 0 & 1 & | & \frac{3}{10} & \frac{1}{10} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & \frac{4}{10} & -\frac{2}{10} \\ 0 & 1 & | & \frac{3}{10} & \frac{1}{10} \end{bmatrix}.$ So: $\vec{x}_1^* = \begin{bmatrix} \frac{4}{10} \\ \frac{3}{10} \end{bmatrix}$ and $\vec{x}_2^* = \begin{bmatrix} -\frac{2}{10} \\ \frac{1}{10} \end{bmatrix}$. Observe that $\begin{vmatrix} 1 \\ 4 \end{vmatrix} = 1 \begin{vmatrix} 1 \\ 0 \end{vmatrix} + 4 \begin{vmatrix} 0 \\ 1 \end{vmatrix}$, therefore the particular solution we are seeking is $\vec{x}_{3}^{*} = 1\vec{x}_{1}^{*} + 4\vec{x}_{2}^{*} = \begin{vmatrix} \frac{4}{10} \\ \frac{3}{10} \end{vmatrix} + 4 \begin{vmatrix} -\frac{2}{10} \\ \frac{1}{10} \end{vmatrix} = \begin{vmatrix} -\frac{2}{5} \\ \frac{7}{10} \end{vmatrix}$. And to check our work, observe that: $\mathbf{A}\vec{x}_{3}^{*} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} -\frac{2}{5} \\ \frac{7}{10} \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}. \quad \checkmark$

Adjoint Systems, Cokernel, and Coimage

- **Definition**: The *adjoint* to $\mathbf{A}\vec{x} = \vec{b}$ of *m* equations in *n* unknowns is $\mathbf{A}^T\vec{y} = \vec{f}$ consisting of *n* equations in *m* unknowns $\vec{y} \in \mathbb{R}^m$ with RHS $\vec{f} \in \mathbb{R}^n$.
- On the surface, there appears to be no direct connection between the solution sets of a linear system and its adjoint. However, the two are linked.

Definitions: The *coimage* of an $m \times n$ matrix **A** is the image of its transpose, $coimg \mathbf{A} = img \mathbf{A}^T = \left\{ \mathbf{A}^T \vec{y} \mid \vec{y} \in \mathbb{R}^m \right\} \subset \mathbb{R}^n$.

The coimage coincides with the subspace of \mathbb{R}^n spanned by the rows of **A**, called **A**'s *row space*.

The *cokernel* of **A** is the kernel of its transpose, $co \ker \mathbf{A} = \ker \mathbf{A}^T = \left\{ \vec{w} \in \mathbb{R}^m \mid \mathbf{A}^T \vec{w} = \vec{0} \right\} \subset \mathbb{R}^m$, that is, the set of solutions to the homogeneous adjoint system.

The adjoint system $\mathbf{A}^T \vec{y} = \vec{f}$ has a solution **iff** $\vec{f} \in img \mathbf{A}^T = coimg \mathbf{A}$.

- Observe that if $\mathbf{A}^T \vec{w} = \vec{0}$, then taking the transpose of both sides: $(\mathbf{A}^T \vec{w})^T = \vec{0}^T \Rightarrow \vec{w}^T \mathbf{A} = \vec{0}^T$. So if we let $\vec{r} := \vec{w}^T$, we have:
- **Definition**: The cokernel of **A** can be identified with the set of all row vectors \vec{r} satisfying $\vec{r} \mathbf{A} = \vec{0}^T$, and therefore the cokernel is referred to as the *left null space of* **A**.

Example: Find the general solution to the adjoint of $\mathbf{A}\vec{x} = \vec{b}$, where $\mathbf{A} = \begin{bmatrix} 1 & -3 & -7 & 9 \\ 0 & 1 & 5 & -3 \\ 1 & -2 & -2 & 6 \end{bmatrix}$.

First:
$$\mathbf{A}^{T} = \begin{bmatrix} 1 & 0 & 1 \\ -3 & 1 & -2 \\ -7 & 5 & -2 \\ 9 & -3 & 6 \end{bmatrix}$$
. Then solve the system $\mathbf{A}\vec{y} = \vec{f}$.
$$\begin{bmatrix} 1 & 0 & 1 & f_{1} \\ -3 & 1 & -2 & f_{2} \\ -7 & 5 & -2 & f_{3} \\ 9 & -3 & 6 & f_{4} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & f_{1} \\ 0 & 1 & 1 & 3f_{1} + f_{2} \\ 0 & 5 & 5 & 7f_{1} + f_{3} \\ 0 & 0 & 0 & 3f_{2} + f_{4} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & f_{1} \\ 0 & 1 & 1 & 3f_{1} + f_{2} \\ 0 & 0 & 0 & 3f_{2} + f_{4} \end{bmatrix}$$

This requires $f_4 = -3f_2$ and $f_3 = 8f_1 + 5f_2$. We have one free column: y_3 .

Satisfying these yields:
$$\vec{y} = \begin{bmatrix} f_1 - y_3 \\ 3f_1 + f_2 - y_3 \\ y_3 \end{bmatrix} = \begin{bmatrix} f_1 \\ 3f_1 + f_2 \\ 0 \end{bmatrix} + y_3 \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

First term on the RHS represents a particular solution,

the second is the general element of the cokernel: ker $\mathbf{A}^T = co \ker \mathbf{A}$.

The Fundamental Theorem of Linear Algebra

Observe that the rank of a matrix r (# of pivots), indicates # of independent columns, but also # of independent rows! Therefore:

Theorem: Given $\mathbf{A}^{m \times n}$, let *r* be its rank. Then, dim *coimg* \mathbf{A} = dim *img* \mathbf{A} = rank \mathbf{A} = rank \mathbf{A}^T = r, dim ker \mathbf{A} = n - r, dim co ker \mathbf{A} = m - r.

Proof in book.

A and A^T have same rank, even though their row echelon forms are quite different and almost never transposes of each other.

Basis for Subspaces

Given $A^{m \times n}$ with row echelon form U, to find a basis for:

- *img* A: choose *r* columns of A in which the pivots appear in U (col space);
- ker A: write gen. sol. to $A\vec{x} = \vec{0}$ as a linear combination of n r basis vectors whose coefficients are the free vars;
- *coimg* **A**: choose *r* nonzero rows of **U** (row space);

• *co* ker A: write gen. sol. to adjoint system $\mathbf{A}^T \vec{y} = \vec{0}$ as linear combination of m - r basis vectors whose coefficients are the free vars.

Example: Find dimension of, and a basis for, the subspace spanned by the following set of vectors:

$$\begin{bmatrix} 1 \\ 0 \\ -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ -3 \end{bmatrix}, \begin{bmatrix} -3 \\ -4 \\ 1 \\ 6 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ -8 \\ 7 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -6 \\ 9 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -3 & 1 & 2 \\ 0 & 1 & -4 & -3 & 1 \\ -3 & 2 & 1 & -8 & -6 \\ 2 & -3 & 6 & 7 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -3 & 1 & 2 \\ 0 & 1 & -4 & -3 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Three pivot points imply the image is 3D, spanned by the first, second, and fourth columns of A.

Therefore, a basis is:
$$\vec{B} = \left\{ \begin{bmatrix} 1\\0\\-3\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\-3\\-3 \end{bmatrix}, \begin{bmatrix} 1\\-3\\-8\\7 \end{bmatrix} \right\}.$$