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2.5 The Fundamental Matrix Subspaces
Definition: The image (or column space or range) of an m  n matrix A is the subspace: imgA  Rm spanned by its columns.

imgA  spancolsA  Rm

 b  Rm |b  a1c1 ancn where ai  R, and c i are columns of A

 b  Rm | Ac  b has a solution .

Definition: The kernel of A is the subspace kerA  Rn consisting of all vectors that are annihilated by A,

so kerA  z  Rn |A z  0  Rn.

Example: A 
1 1 2

2 2 4
(m  2, n  3)

imgA  span
1

2
,

1

2
,

2

4
.

Note: This is not a basis, as columns are dependent:

1

2
 1

1

2
 0

2

4
(in fact, all columns parallel)

Row reduced: 
1 2 2

0 0 0
 U.

So: imgA is one-dimensional, with basis
1

2
.

In general: A basis for imgA is given by the columns of A with pivots.

So: dim imgA  # cols with pivots  rankA.

Caution: The columns of U with pivots are not a basis for imgA, and usually don’t belong to imgA.



For example:
1

0
in the previous example.

Remark: If A is an m  n matrix: kerA lives in Rn and imgA lives in Rm.

Observe: # cols with pivots is dim imgA.

# cols without pivots is dim ker A.

Conclude:

Rank-Nullity Theorem: Let A be an m  n matrix. Then n  dim imgA  dim kerA  rankA  nullityA.

Intuitively: the input is m-dimensional.

Each of m dimensions is either killed off (goes to 0), or survives to the image.

Example: A57 of rank 3 has dim kerA  ??

 4.

A68 with dim kerA  2 has rank 6.

[see animation in class]

Example: A 

1 2 3

3 6 9

2 4 6

3 0 1



1 2 3

0 6 10

0 0 0

0 0 0

.

So first and second cols have pivots.

Thus,

1

3

2

3

,

2

6

4

0

is a basis for imgA, which is two-dimensional subspace of R4.

One-dimensional kernel of R3.

Finding General Solutions



Fix A and b , and suppose there are two solutions: Ax  b and Ay  b .

Then their difference z  x  y satisfies: A z  Ax  y   Ax  Ay  b  b  0.

Conclude: The difference of two solutions z is in the kernel of A.

And, every solution x can be written as x  y  z , for any given solution y and an element z of the kernel.

Thus, if we know:

 kerA, and

 a single solution x

to Ax  b ,

then we can find all solutions (!!).

Theorem: Suppose x is a solution to Ax  b . Then, all other solutions are of the form: x  z, where z  kerA.

Example: Let A :

1 0 1

1 1 1

1 2 3

and b :

3

2

1

.

Row reduce A|b to get:

1 0 1 | 3

0 1 2 | 1

0 0 0 | 0

.

Note c3 is free. So, if we set c3  0, we find c1  3 and c2  1.

So, x 

3

1

0

is one solution.

Next, find kernel. General solution to Ac  0.

c1

c2

c3

 c3

1

2

1

So, kerA  span

1

2

1

.



Thus, all solutions to Ax  b are of the form

3

1

0

 c

1

2

1

. This is the "general solution."

Example: Let A : 2  1 5 and Ax  6. Find general solution.

kerA  (vectors perp. to 2  1 5 )  (plane defined by 2x  y  5z  0)

Observe A already reduced with c2,c3 free.

kerA  span

1
2

1

0

,

 5
2

0

1

.

One solution to Ax  6 is ??

x

y

z



3

0

0

.

So, general solution is

x

y

z



3

0

0

 a

1
2

1

0

 b

 5
2

0

1

.

Example: Let A :
1 2 0

2 3 1
, b :

3

1
. Find general solution.

Row reduce: A|b 
1 2 0 | 3

0 7 1 | 7


1 0 2
7 | 1

0 1 1
7 | 1

. (one solution?)

So, c3 free. If c3  0, then c1  1 and c2  1.

So one solution is: x



1

1

0

.

Next, find kerA. General solution to Ac  0.



c1

c2

c3

 c3

 2
7

 1
7

1

.

Thus, general solution to Ac  b is:

1

1

0

 c3

 2
7

 1
7

1

.

Example: Characterize the image and kernel of
1 1 2

2 2 4
.

Example: Characterize the image and kernel of

1 1 0 1

1 0 1 1

1 2 1 1

1 2 3 1

.

Proposition: Given Amn, the following conditions are equivalent:

 ker A  0 , i.e., the homogeneous system Ax  0 has the unique solution x  0.

 rankA  n.

 Ax  b has no free variables.

 Ax  b has a unique solution for each b  imgA.

Proposition: Given Ann(square), the following conditions are equivalent:

 A is nonsingular.

 rankA  n.

 ker A  0

 imgA  Rn.



The Superposition Principal

For homogeneous systems Ax  0, superposition allows one to generate new solutions by combining known solutions.

For inhomogeneous systems Ax  b , superposition combines the solutions corresponding to different inhomogeneities b i.

In physical applications, the inhomogeneities typically represent external forces f , and solutions x represent the responses of the
physical apparatus. The linear superposition principle says that if we know how the system responds to the individual forces

( f , g , etc.), we immediately know it’s response to any combination thereof.

Suppose x 1

, x 2


are solutions to two inhomogeneous systems, Ax  b 1, and Ax  b 2, respectively

(with the same coefficient matrix A).

Consider the system Ax  c1b 1  c2b 2, where the RHS is a superposition of the previous two.

Then a particular solution to the combined system is given by the same superposition of the previous solutions:

x

 c1 x 1


 c2 x 2


.

Proof: Ax

 A c1 x 1


 c2 x 2


 c1Ax 1


 c2Ax 2


 c1b 1  c2b 2.

Spring-Mass Set-up

Example: The system:
4 1

1 4

x1

x2


f1

f2
models the mechanical response of a pair of masses

connected by springs, subject to external forcing f  R2 (constant acceleration).

Solution x  x1,x2T represents displacements of masses, while entries of RHS f  f1, f2 are applied forces.

We can directly determine the response of the system x 1

 4

15 , 
1
15 to a unit force e 1  1,0 on the first mass,

and the response x 2

  1

15 ,
4
15 to a unit force e 2  0,1 on the second mass.

Superposition now gives response x of system to any general force f since:

f 
f1

f2
 f1

e 1  f2
e 2  f1

0

1
 f2

1

0
, and hence

x  f1 x 1

 f2 x 2


 f1

4
15

 1
15

 f2
 1

15

4
15


4
15 f1 

1
15 f2

 1
15 f1 

4
15 f2

.



Theorem: Suppose that x 1

, , x k


are particular solutions to each of the inhomogeneous linear systems

Ax  b 1, Ax  b 2,  Ax  b k, all having the same coefficient matrix A, and where b 1, , b k  imgA.

Then, for any choice of scalars c1, ,ck, a particular solution to the combined system Ax  c1b 1 ckb k 

is the corresponding superposition: x

 c1 x 1


ck x k


of individual solutions. The general solution to 

is x  x

 z  c1 x 1


ck x k


 z , where z  kerA is the general solution to the homogeneous system A z  0.

Therefore, if we know particular solutions x 1

, , x m


to Ax  e i for each i  1, ,m, then we can reconstruct a

particular solution x

to the general linear system Ax  b , by first writing: b : b1

e 1 bm
em

as a linear combination of the basis vectors, and then using superposition to form x

 b1 x 1


bm x m


.

Example: Find a solution x 1

to the system

1 2

3 4

x

y


1

0
,

and a solution x 2

to

1 2

3 4

x

y


0

1
.

Express the solution to
1 2

3 4

x

y


1

4
as a linear combination of x 1


and x 2


.

1 2 | 1 0

3 4 | 0 1


1 2 | 1 0

0 10 | 3 1


1 2 | 1 0

0 1 | 3
10

1
10


1 0 | 4

10  2
10

0 1 | 3
10

1
10

.

So: x 1



4
10

3
10

and x 2



 2
10

1
10

.

Observe that
1

4
 1

1

0
 4

0

1
, therefore the particular solution we are seeking is

x 3

 1x 1


 4x 2




4
10

3
10

 4
 2

10

1
10


 2

5

7
10

. And to check our work, observe that:

Ax 3



1 2

3 4

 2
5

7
10


1

4
. 



Adjoint Systems, Cokernel, and Coimage

Definition: The adjoint to Ax  b of m equations in n unknowns is AT y  f

consisting of n equations in m unknowns y  Rm with RHS f  Rn.

On the surface, there appears to be no direct connection between the solution sets of a linear system and its adjoint.

However, the two are linked.

Definitions: The coimage of an m  n matrix A is the image of its transpose, coimgA  imgAT  AT y | y  Rm  Rn.

The coimage coincides with the subspace of Rn spanned by the rows of A, called As row space.

The cokernel of A is the kernel of its transpose, coker A  ker AT  w  Rm | ATw  0  Rm, that is,

the set of solutions to the homogeneous adjoint system.

The adjoint system AT y  f has a solution iff f  imgAT  coimgA.

Observe that if ATw  0, then taking the transpose of both sides:

ATw
T
 0

T
 w

T
A  0

T
.

So if we let r : w
T
, we have:

Definition: The cokernel of A can be identified with the set of all row vectors r satisfying rA  0
T
,

and therefore the cokernel is referred to as the left null space of A.

Example: Find the general solution to the adjoint of Ax  b , where A 

1 3 7 9

0 1 5 3

1 2 2 6

.

First: AT 

1 0 1

3 1 2

7 5 2

9 3 6

. Then solve the system Ay  f .

1 0 1 f1

3 1 2 f2

7 5 2 f3

9 3 6 f4



1 0 1 f1

0 1 1 3f1  f2

0 5 5 7f1  f3

0 0 0 3f2  f4



1 0 1 f1

0 1 1 3f1  f2

0 0 0 8f1  5f2  f3

0 0 0 3f2  f4

.



This requires f4  3f2 and f3  8f1  5f2. We have one free column: y3.

Satisfying these yields: y 

f1  y3

3f1  f2  y3

y3



f1

3f1  f2

0

 y3

1

1

1

.

First term on the RHS represents a particular solution,

the second is the general element of the cokernel: kerAT  cokerA.

The Fundamental Theorem of Linear Algebra

Observe that the rank of a matrix r (# of pivots), indicates # of independent columns, but also # of independent rows! Therefore:

Theorem: Given Amn, let r be its rank. Then, dim coimgA  dim imgA  rankA  rankAT  r,

dim kerA  n  r, dim cokerA  m  r.

Proof in book.

A and AT have same rank, even though their row echelon forms are quite different and almost never transposes of each other.

Basis for Subspaces
Given Amn with row echelon form U, to find a basis for:

 imgA: choose r columns of A in which the pivots appear in U (col space);

 kerA: write gen. sol. to Ax  0 as a linear combination of n  r basis vectors whose coefficients are the free vars;

 coimgA: choose r nonzero rows of U (row space);

 coker A: write gen. sol. to adjoint system AT y  0 as linear combination of m  r basis vectors whose coefficients are the
free vars.

Example: Find dimension of, and a basis for, the subspace spanned by the following set of vectors:

1

0

3

2

,

0

1

2

3

,

3

4

1

6

,

1

3

8

7

,

2

1

6

9

A 

1 0 3 1 2

0 1 4 3 1

3 2 1 8 6

2 3 6 7 9



1 0 3 1 2

0 1 4 3 1

0 0 0 1 2

0 0 0 0 0



Three pivot points imply the image is 3D, spanned by the first, second, and fourth columns of A.

Therefore, a basis is: B 

1

0

3

2

,

0

1

2

3

,

1

3

8

7

.


