Applied Linear Algebra
Instructor: Jodin Morey = moreyjc@umn.edu

2.5 The Fundamental Matrix Subspaces

Definition: The image (or column space or range) of an m x n matrix A is the subspace: img A < R™ spanned by its columns.
imgA = span{cols A} < R"

= {b e R"|b =ajcy +...+a,c, where a; € R, and ¢; are columns ofA}
= {b e R"| AC = b has a solution}.

Definition: The kernel of A is the subspace ker A < R" consisting of all vectors that are annihilated by A,
N -
so kerA = {z e R"|AZ = O} c R".
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Note: This is not a basis, as columns are dependent:

1 -1 2
=-1 +0 (in fact, all columns parallel)
-2 2 —4

1 =2 2
Row reduced: —» =U
0 0 O

1 -1 2
Example: A = (m=2,n=23)

1
So: img A is one-dimensional, with basis |: 5 :|

In general: A basis for img A is given by the columns of A with pivots.

So: dim img A = # cols with pivots = rank A.

0 Caution: The columns of U with pivots are not a basis for img A, and usually don’t belong to img A.



1
For example: |: 0 :| in the previous example.

Remark: If A is an m x n matrix: ker A lives in R” and img A lives in R”.

Observe: # cols with pivots is dim imgA.

# cols without pivots is dim ker A.

Conclude:

Rank-Nullity Theorem: Let A be an m x n matrix. Then n = dim img A + dim ker A = rank A + nullity A.

Intuitively: the input is m-dimensional.

Each of m dimensions is either killed off (goes to 6)), or survives to the image.

Example: A> of rank 3 has dim ker A = ??

i

=4,
[see animation in class]
A®® with dim ker A = 2 has rank 6.
1 2 3 ]
-3 6 -9
Example: A =
-2 4 -6
3 -1
12 3]
0 6 -10
0 0 O
0 0 0
So first and second cols have pivots.
1 -2
-3 ) ) . D . . 4
Thus, > | is a basis for img A, which is two-dimensional subspace of R™.
3

One-dimensional kernel of R?.

Finding General Solutions



X — . N — N —
Fix A and b, and suppose there are two solutions: Ax = b and Ay = b.
Then their difference Z = X — 7 satisfies: AZ = A(X —3) = AX-AY = b —b = 0.

Conclude: The difference of two solutions Z is in the kernel of A.

And, every solution X can be written as X = 3 + Z, for any given solution ¥ and an element Z of the kernel.

Thus, if we know:
@® kerA, and
® asingle solution ¥ to AY = b,

then we can find all solutions (!!).

-
Theorem: Suppose x* is a solution to AX = b. Then, all other solutions are of the form: x* + z, where z € kerA.

I 0 -1 3
Example: LetA = | -1 1 -1 and b = -2
1 -2 3 1
1 0 -11]3
N
Row reduce [A|b } toget:| 0 1 -2 | 1
00 0 | O

So, ker A = span 2



Thus, all solutions to AX = b are of the form | 1 +c| 2 |. Thisis the "general solution."

Example: Let A := [2 -15 :| and A¥Y = 6. Find general solution.
ker A = (vectors perp. to |:2 -15 :|) = (plane defined by 2x — y + 5z = 0)

Observe A already reduced with ¢;, c3 free.

1 _3
2 2
ker A = span 1 , 0
0 1
One solution to AX = 6is ??
X 3
y = 0
z 0
1 _35
2 2
So, general solutionis | y = 0 +a 1 +b 0
z 0 1
1 -2 0 - 3 , .
Example: Let A := 531 | b = At Find general solution.
1 -2 0 3 10 2 1
Row reduce: [A|7))} - | >, 7| (one solution?)
0o 7 1| -7 0 1 % | —1

So, c3 free. If c3 = 0, thenc; = 1 and ¢, = 1.

1

. . *
So one solution is: ¥ = | -1

0

Next, find ker A. General solution to A€ = _0)



2
C1 -7
() = C3 —%
c3 1
1 -
. - -,
Thus, general solution to A¢ = b is: -1 |[+c3 —%
0 1

I -1 2
Example: Characterize the image and kernel of :|

-2 2 4
1 -1 0 1]
) , -1 0 -1
Example: Characterize the image and kernel of Lo 1
1 2 -3 1

Proposition: Given A™", the following conditions are equivalent:
¢ ker A = {8}, i.e., the homogeneous system AX = 0 has the unique solution ¥ = 0.
¢ rank A = n.
- 7 .
¢ AX = b has no free variables.

- - . . - .
¢ AX = b has aunique solution for each b € imgA.

Proposition: Given A" (square), the following conditions are equivalent:
¢ A is nonsingular.

¢ rank A = n.

¢ ker A = {6}

¢ imgA = R".



The Superposition Principal
For homogeneous systems AX = 6, superposition allows one to generate new solutions by combining known solutions.

. e .o, . . . . . .. e
For inhomogeneous systems AX = b, superposition combines the solutions corresponding to different inhomogeneities b ;.

—
In physical applications, the inhomogeneities typically represent external forces f, and solutions X represent the responses of the
physical apparatus. The linear superposition principle says that if we know how the system responds to the individual forces

—
(f,2, etc.), we immediately know it’s response to any combination thereof.

Suppose X, X, are solutions to two inhomogeneous systems, AX = b, and AX = b», respectively

(with the same coefficient matrix A).

- -
Consider the system AX = ¢, b + c2b,, where the RHS is a superposition of the previous two.

Then a particular solution to the combined system is given by the same superposition of the previous solutions:

—k —k —%
X =C1X1+cCrxs.

* * * * * - -
Proof: AX" = A<cl?1 +cz?2> = C1AX | + 2AX> = c1b| +ca2bo.

X1 X7

— . -

Spring-Mass Set-up

4 1 X
Example: The system: . 1 = S models the mechanical response of a pair of masses

4 X2 f2

-
connected by springs, subject to external forcing f € R? (constant acceleration).

Solution ¥ = (x1,x2)” represents displacements of masses, while entries of RHS 7 = (f1, f2) are applied forces.

We can directly determine the response of the system ¥ = (<=, — &) to a unit force 2, = (1,0) on the first mass,
and the response X = —%, %) to a unit force ¢, = (0,1) on the second mass.

-
Superposition now gives response X of system to any general force f since:

- fi . . 0 1
f= = fie1 +f2e2 = fi + f2 , and hence
S 1 0
4 | 4 !
* * q5 T _fl__ﬁ
Y=fiXi+fxa=Al S |+l 2 =] B8

__1 4 __1 4
15 15 AN 15f2



Theorem: Suppose that X7, ..., X are particular solutions to each of the inhomogeneous linear systems
AX = by, AX = by, ... AX = by, all having the same coefficient matrix A, and where b1,..., b € imgA.

— —
Then, for any choice of scalars c1, ..., ¢y, a particular solution to the combined system AX = c1 b +...+ciby (%)

is the corresponding superposition: ¥~ = ¢, x| +...+cixy of individual solutions. The general solution to (*)

is¥ =X +Z = c1X] +...+cxxf + Z, where Z € ker A is the general solution to the homogeneous system AZ = 0.

. . . * * o~ .
Therefore, if we know particular solutions X1, ..., %, to AX = ¢; foreach i = 1,...,m, then we can reconstruct a

— —
particular solution X~ to the general linear system AX = b, by first writing: b := b12; +...+bwem

. . . . . o, * * *
as a linear combination of the basis vectors, and then using superposition to form ¥~ = b1 X +... +buX .

. . sk 1 2 X 1
Example: Find a solution X' to the system = ,
-3 4 y 0
R 1 2 X 0
and a solution x, to = .
-3 4 y 1

Express the solution to 3 4 = A as a linear combination of x| and x,.
- y
1 210 1 2110 12] 1 0 10| 55 1
-3 4|01 10 | 31 01|%1—10 01|13—0%

—k —%
So: X| = and X, =

o

4 _2 _2

* * * 10 10 5
X; = 1X] +4%; = s +4 | = ; . And to check our work, observe that:

10 10 10




Adjoint Systems, Cokernel, and Coimage

5
Definition: The adjoint to AX = b of m equations in 7 unknowns is A7y = f

-
consisting of n equations in m unknowns y € R” with RHS f € R".

On the surface, there appears to be no direct connection between the solution sets of a linear system and its adjoint.

However, the two are linked.
Definitions: The coimage of an m x n matrix A is the image of its transpose, coimg A = img A’ = {AT}’ | ¥ e R" } c R”.
The coimage coincides with the subspace of R” spanned by the rows of A, called A's row space.

The cokernel of A is the kernel of its transpose, coker A = ker AT = {VV’ e R"| ATw = 6} c R”, that is,

the set of solutions to the homogeneous adjoint system.
.. - 2 . eor 2 . T .
The adjoint system A”y = f has a solution iff f € imgA" = coimgA.

Observe that if A7% = 0, then taking the transpose of both sides:

T T
AT =0 = wWA=0.

. T
Soifwelet7 :=w , we have:

T
Definition: The cokernel of A can be identified with the set of all row vectors 7 satisfying 7A = T)) ,

and therefore the cokernel is referred to as the left null space of A.

1 -3 -7 9
Example: Find the general solution to the adjoint of AX = 3, where A = 01 5 -3
1 -2 -2 6
1 0 1 |
First: AT = -3 - . Then solve the system Ay = 7
-7 5 =2
9 -3 6
1 0 1t | [ror s ] 1o fi ]
31 2 f 01 1 3i+h 01 1 3fi+h
75 28 | L ossaen | | 000 8i-56+p
9 3 6 fi 000 36+/ 000 3h+f




This requires fi4 = —3f> and f3 = 8f1 + 5/>. We have one free column: ys.

f1 - )3 f1 -1
Satisfying these yields: ¥ = | 3fi+fo—ys |=| 3fi+fr |+y3| -1
y3 0 1

First term on the RHS represents a particular solution,

the second is the general element of the cokernel: ker A” = cokerA.

The Fundamental Theorem of Linear Algebra
Observe that the rank of a matrix » (# of pivots), indicates # of independent columns, but also # of independent rows! Therefore:

Theorem: Given A™", let r be its rank. Then, dimcoimgA = dimimgA = rankA = rankA” = r,

dim kerA = n—r, dimcokerA =m—r.
Proof in book.

A and AT have same rank, even though their row echelon forms are quite different and almost never transposes of each other.

Basis for Subspaces
Given A™" with row echelon form U, to find a basis for:

¢ img A: choose r columns of A in which the pivots appear in U (col space);

. g . . . . .
¢ kerA: write gen. sol. to AX = 0 as a linear combination of n — r basis vectors whose coefficients are the free vars;

¢ coimg A: choose r nonzero rows of U (row space);

-
¢ coker A: write gen. sol. to adjoint system A7y = 0 as linear combination of m — r basis vectors whose coefficients are the
free vars.

Example: Find dimension of, and a basis for, the subspace spanned by the following set of vectors:

1 0 -3 1 2
0 1 —4 -3 1
300 2 1 | -8 | -6
2 -3 6 7 9

1 0 -3 1 2 10 -3 1 2

A= 0 1 -4 -3 1 . 01 4 -3 1
-3 2 1 -8 -6 00 0 1 -2

2 36 7 9 00 0 0 O



Three pivot points imply the image is 3D, spanned by the first, second, and fourth columns of A.

0 1
o 0 -3

Therefore, a basis is: B = , )
-3 2 -8




