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2.5 The Fundamental Matrix Subspaces
Definition: The image (or column space or range) of an m  n matrix A is the subspace: imgA  Rm spanned by its columns.

imgA  spancolsA  Rm

 b  Rm |b  a1c1 ancn where ai  R, and c i are columns of A

 b  Rm | Ac  b has a solution .

Definition: The kernel of A is the subspace kerA  Rn consisting of all vectors that are annihilated by A,

so kerA  z  Rn |A z  0  Rn.

Example: A 
1 1 2

2 2 4
(m  2, n  3)

imgA  span
1

2
,

1

2
,

2

4
.

Note: This is not a basis, as columns are dependent:

1

2
 1

1

2
 0

2

4
(in fact, all columns parallel)

Row reduced: 
1 2 2

0 0 0
 U.

So: imgA is one-dimensional, with basis
1

2
.

In general: A basis for imgA is given by the columns of A with pivots.

So: dim imgA  # cols with pivots  rankA.

Caution: The columns of U with pivots are not a basis for imgA, and usually don’t belong to imgA.



For example:
1

0
in the previous example.

Remark: If A is an m  n matrix: kerA lives in Rn and imgA lives in Rm.

Observe: # cols with pivots is dim imgA.

# cols without pivots is dim ker A.

Conclude:

Rank-Nullity Theorem: Let A be an m  n matrix. Then n  dim imgA  dim kerA  rankA  nullityA.

Intuitively: the input is m-dimensional.

Each of m dimensions is either killed off (goes to 0), or survives to the image.

Example: A57 of rank 3 has dim kerA  ??

 4.

A68 with dim kerA  2 has rank 6.

[see animation in class]

Example: A 

1 2 3

3 6 9

2 4 6

3 0 1



1 2 3

0 6 10

0 0 0

0 0 0

.

So first and second cols have pivots.

Thus,

1

3

2

3

,

2

6

4

0

is a basis for imgA, which is two-dimensional subspace of R4.

One-dimensional kernel of R3.

Finding General Solutions



Fix A and b , and suppose there are two solutions: Ax  b and Ay  b .

Then their difference z  x  y satisfies: A z  Ax  y   Ax  Ay  b  b  0.

Conclude: The difference of two solutions z is in the kernel of A.

And, every solution x can be written as x  y  z , for any given solution y and an element z of the kernel.

Thus, if we know:

 kerA, and

 a single solution x

to Ax  b ,

then we can find all solutions (!!).

Theorem: Suppose x is a solution to Ax  b . Then, all other solutions are of the form: x  z, where z  kerA.

Example: Let A :

1 0 1

1 1 1

1 2 3

and b :

3

2

1

.

Row reduce A|b to get:

1 0 1 | 3

0 1 2 | 1

0 0 0 | 0

.

Note c3 is free. So, if we set c3  0, we find c1  3 and c2  1.

So, x 

3

1

0

is one solution.

Next, find kernel. General solution to Ac  0.

c1

c2

c3

 c3

1

2

1

So, kerA  span

1

2

1

.



Thus, all solutions to Ax  b are of the form

3

1

0

 c

1

2

1

. This is the "general solution."

Example: Let A : 2  1 5 and Ax  6. Find general solution.

kerA  (vectors perp. to 2  1 5 )  (plane defined by 2x  y  5z  0)

Observe A already reduced with c2,c3 free.

kerA  span

1
2

1

0

,

 5
2

0

1

.

One solution to Ax  6 is ??

x

y

z



3

0

0

.

So, general solution is

x

y

z



3

0

0

 a

1
2

1

0

 b

 5
2

0

1

.

Example: Let A :
1 2 0

2 3 1
, b :

3

1
. Find general solution.

Row reduce: A|b 
1 2 0 | 3

0 7 1 | 7


1 0 2
7 | 1

0 1 1
7 | 1

. (one solution?)

So, c3 free. If c3  0, then c1  1 and c2  1.

So one solution is: x



1

1

0

.

Next, find kerA. General solution to Ac  0.



c1

c2

c3

 c3

 2
7

 1
7

1

.

Thus, general solution to Ac  b is:

1

1

0

 c3

 2
7

 1
7

1

.

Example: Characterize the image and kernel of
1 1 2

2 2 4
.

Example: Characterize the image and kernel of

1 1 0 1

1 0 1 1

1 2 1 1

1 2 3 1

.

Proposition: Given Amn, the following conditions are equivalent:

 ker A  0 , i.e., the homogeneous system Ax  0 has the unique solution x  0.

 rankA  n.

 Ax  b has no free variables.

 Ax  b has a unique solution for each b  imgA.

Proposition: Given Ann(square), the following conditions are equivalent:

 A is nonsingular.

 rankA  n.

 ker A  0

 imgA  Rn.



The Superposition Principal

For homogeneous systems Ax  0, superposition allows one to generate new solutions by combining known solutions.

For inhomogeneous systems Ax  b , superposition combines the solutions corresponding to different inhomogeneities b i.

In physical applications, the inhomogeneities typically represent external forces f , and solutions x represent the responses of the
physical apparatus. The linear superposition principle says that if we know how the system responds to the individual forces

( f , g , etc.), we immediately know it’s response to any combination thereof.

Suppose x 1

, x 2


are solutions to two inhomogeneous systems, Ax  b 1, and Ax  b 2, respectively

(with the same coefficient matrix A).

Consider the system Ax  c1b 1  c2b 2, where the RHS is a superposition of the previous two.

Then a particular solution to the combined system is given by the same superposition of the previous solutions:

x

 c1 x 1


 c2 x 2


.

Proof: Ax

 A c1 x 1


 c2 x 2


 c1Ax 1


 c2Ax 2


 c1b 1  c2b 2.

Spring-Mass Set-up

Example: The system:
4 1

1 4

x1

x2


f1

f2
models the mechanical response of a pair of masses

connected by springs, subject to external forcing f  R2 (constant acceleration).

Solution x  x1,x2T represents displacements of masses, while entries of RHS f  f1, f2 are applied forces.

We can directly determine the response of the system x 1

 4

15 , 
1
15 to a unit force e 1  1,0 on the first mass,

and the response x 2

  1

15 ,
4
15 to a unit force e 2  0,1 on the second mass.

Superposition now gives response x of system to any general force f since:

f 
f1

f2
 f1

e 1  f2
e 2  f1

0

1
 f2

1

0
, and hence

x  f1 x 1

 f2 x 2


 f1

4
15

 1
15

 f2
 1

15

4
15


4
15 f1 

1
15 f2

 1
15 f1 

4
15 f2

.



Theorem: Suppose that x 1

, , x k


are particular solutions to each of the inhomogeneous linear systems

Ax  b 1, Ax  b 2,  Ax  b k, all having the same coefficient matrix A, and where b 1, , b k  imgA.

Then, for any choice of scalars c1, ,ck, a particular solution to the combined system Ax  c1b 1 ckb k 

is the corresponding superposition: x

 c1 x 1


ck x k


of individual solutions. The general solution to 

is x  x

 z  c1 x 1


ck x k


 z , where z  kerA is the general solution to the homogeneous system A z  0.

Therefore, if we know particular solutions x 1

, , x m


to Ax  e i for each i  1, ,m, then we can reconstruct a

particular solution x

to the general linear system Ax  b , by first writing: b : b1

e 1 bm
em

as a linear combination of the basis vectors, and then using superposition to form x

 b1 x 1


bm x m


.

Example: Find a solution x 1

to the system

1 2

3 4

x

y


1

0
,

and a solution x 2

to

1 2

3 4

x

y


0

1
.

Express the solution to
1 2

3 4

x

y


1

4
as a linear combination of x 1


and x 2


.

1 2 | 1 0

3 4 | 0 1


1 2 | 1 0

0 10 | 3 1


1 2 | 1 0

0 1 | 3
10

1
10


1 0 | 4

10  2
10

0 1 | 3
10

1
10

.

So: x 1



4
10

3
10

and x 2



 2
10

1
10

.

Observe that
1

4
 1

1

0
 4

0

1
, therefore the particular solution we are seeking is

x 3

 1x 1


 4x 2




4
10

3
10

 4
 2

10

1
10


 2

5

7
10

. And to check our work, observe that:

Ax 3



1 2

3 4

 2
5

7
10


1

4
. 



Adjoint Systems, Cokernel, and Coimage

Definition: The adjoint to Ax  b of m equations in n unknowns is AT y  f

consisting of n equations in m unknowns y  Rm with RHS f  Rn.

On the surface, there appears to be no direct connection between the solution sets of a linear system and its adjoint.

However, the two are linked.

Definitions: The coimage of an m  n matrix A is the image of its transpose, coimgA  imgAT  AT y | y  Rm  Rn.

The coimage coincides with the subspace of Rn spanned by the rows of A, called As row space.

The cokernel of A is the kernel of its transpose, coker A  ker AT  w  Rm | ATw  0  Rm, that is,

the set of solutions to the homogeneous adjoint system.

The adjoint system AT y  f has a solution iff f  imgAT  coimgA.

Observe that if ATw  0, then taking the transpose of both sides:

ATw
T
 0

T
 w

T
A  0

T
.

So if we let r : w
T
, we have:

Definition: The cokernel of A can be identified with the set of all row vectors r satisfying rA  0
T
,

and therefore the cokernel is referred to as the left null space of A.

Example: Find the general solution to the adjoint of Ax  b , where A 

1 3 7 9

0 1 5 3

1 2 2 6

.

First: AT 

1 0 1

3 1 2

7 5 2

9 3 6

. Then solve the system Ay  f .

1 0 1 f1

3 1 2 f2

7 5 2 f3

9 3 6 f4



1 0 1 f1

0 1 1 3f1  f2

0 5 5 7f1  f3

0 0 0 3f2  f4



1 0 1 f1

0 1 1 3f1  f2

0 0 0 8f1  5f2  f3

0 0 0 3f2  f4

.



This requires f4  3f2 and f3  8f1  5f2. We have one free column: y3.

Satisfying these yields: y 

f1  y3

3f1  f2  y3

y3



f1

3f1  f2

0

 y3

1

1

1

.

First term on the RHS represents a particular solution,

the second is the general element of the cokernel: kerAT  cokerA.

The Fundamental Theorem of Linear Algebra

Observe that the rank of a matrix r (# of pivots), indicates # of independent columns, but also # of independent rows! Therefore:

Theorem: Given Amn, let r be its rank. Then, dim coimgA  dim imgA  rankA  rankAT  r,

dim kerA  n  r, dim cokerA  m  r.

Proof in book.

A and AT have same rank, even though their row echelon forms are quite different and almost never transposes of each other.

Basis for Subspaces
Given Amn with row echelon form U, to find a basis for:

 imgA: choose r columns of A in which the pivots appear in U (col space);

 kerA: write gen. sol. to Ax  0 as a linear combination of n  r basis vectors whose coefficients are the free vars;

 coimgA: choose r nonzero rows of U (row space);

 coker A: write gen. sol. to adjoint system AT y  0 as linear combination of m  r basis vectors whose coefficients are the
free vars.

Example: Find dimension of, and a basis for, the subspace spanned by the following set of vectors:

1

0

3

2

,

0

1

2

3

,

3

4

1

6

,

1

3

8

7

,

2

1

6

9

A 

1 0 3 1 2

0 1 4 3 1

3 2 1 8 6

2 3 6 7 9



1 0 3 1 2

0 1 4 3 1

0 0 0 1 2

0 0 0 0 0



Three pivot points imply the image is 3D, spanned by the first, second, and fourth columns of A.

Therefore, a basis is: B 

1

0

3

2

,

0

1

2

3

,

1

3

8

7

.


