2.4 Basis and Dimension

Definition: A basis \mathcal{B} of a vector space *V* is a finite collection of elements $\vec{v}_1, \dots, \vec{v}_n \in V$ that spans *V*, and is linearly independent.

Example:
$$\mathcal{B} := \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$
 basis for \mathbb{R}^2 . But so is $\left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right\}$, as is $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix} \right\}$, etc.

Theorem: Every basis \mathcal{B} of \mathbb{R}^n consists of exactly *n* vectors. Furthermore, a set of *n* vectors $\vec{v}_1, \dots, \vec{v}_n \in \mathbb{R}^n$ is a basis **iff** the $n \times n$ matrix $\mathbf{A} = (\vec{v}_1 \dots \vec{v}_n)$ is nonsingular; in other words $rank \mathbf{A} = n$.

Theorem: Suppose vector space V has a basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_n\}$ for some $n \in N$. Then every other basis of V has the same number, n, of elements in it. This number is called the **dimension of** V, and is written dim V = n.

The proof of this theorem rests on the following lemma: **Lemma**: Suppose $\vec{v}_1, \dots, \vec{v}_n$ span a vector space *V*. Then every set of k > n elements $\vec{w}_1, \dots, \vec{w}_k \in V$ is linearly dependent.

Proof of Lemma: We can write each element $\vec{w}_j = \sum_{i=1}^n a_{ij} \vec{v}_i$ (where j = 1, ..., k), as a linear combination of the spanning set.

Then,
$$c_1 \vec{w}_1 + \ldots + c_k \vec{w}_k = c_1 \sum_{i=1}^n a_{i1} \vec{v}_i + \ldots + c_k \sum_{i=1}^n a_{ik} \vec{v}_i = \sum_{i=1}^n \sum_{j=1}^k a_{ij} c_j \vec{v}_i.$$
 (collected the \vec{v}_i)

It is sufficient to prove the lemma to show that $c_1 \vec{w}_1 + \ldots + c_k \vec{w}_k = \sum_{i=1}^n \sum_{j=1}^k a_{ij} c_j \vec{v}_i = \vec{0}$ has a nontrivial

 $\vec{c} = (c_1, \dots, c_k)$ solution. Looking at the sigma eq term-wise, each of the *n* terms' coefficients will be zero when

 $\sum_{j=1}^{k} a_{ij}c_j = 0$ (where i = 1, ..., n). Observe this consists of *n* equations in k > n unknowns c_j .

A previous theorem guarantees that every homogeneous system with more unknowns than equations always has a nontrivial solution $\vec{c} \neq \vec{0}$, and this immediately implies that $\vec{w}_1, \dots, \vec{w}_k$ are linearly dependent.

Proof of the preceding theorem (every basis has same number of elements):

Recall: $\vec{v}_1, \ldots, \vec{v}_m$ in $V \subseteq \mathbb{R}^n$ form a basis of V if they span V and are linearly independent.

Let $\vec{v}_1, \ldots, \vec{v}_p$ and $\vec{w}_1, \ldots, \vec{w}_q$ be bases of V.

Since $\vec{v}_1, \ldots, \vec{v}_p$ are linearly independent and $\vec{w}_1, \ldots, \vec{w}_q$ span V, we have $p \leq q$, by previous thm.

Likewise, since $\vec{w}_1, \ldots, \vec{w}_q$ are linearly independent and $\vec{v}_1, \ldots, \vec{v}_p$ span V, we have $q \leq p$. Therefore, p = q.

Examples - Find of the span, basis, dimension of the following:

...

 $\bullet \ A : \{y = x\} \subset \mathbb{R}^2$

$$A = span\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \qquad \mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}, \qquad \dim(A) = 1.$$

• *B*: any line in \mathbb{R}^2 through $\vec{0}$.

 $B = span\{\vec{u}\}$, for some $\vec{u} \neq \vec{0}$ on the line, $\mathcal{B} = \{\vec{u}\}$, $\dim(B) = 1$.

. . .

• *C*: any plane in \mathbb{R}^3 through $\overrightarrow{0}$.

Spanned by two ind. vecs in plane, which also forms basis \Rightarrow dim(C) = 2.

•
$$D: span\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 17\\42\\0 \end{bmatrix} \right\} = \dots$$

$$= span\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\} \Rightarrow \dim(D) = 2.$$

$$\bullet$$
 E: \mathbb{R}^n

 $span\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}, \qquad \mathcal{B} = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}, \quad \dim(\mathbb{R}^n) = n.$

Suppose V is an n-dimensional vector space. Then you should be able to convince yourself that:

- Every set of more than n elements of V is linearly dependent.
- No set of fewer than n elements spans V.
- A set of n elements forms a basis **iff** it spans V
- A set of n elements forms a basis **iff** it is linearly independent.

How can you show/prove these results notationally?

Lemma: The elements $\vec{v}_1, \dots, \vec{v}_n$ form a basis of *V* iff every $\vec{x} \in V$ can be written *uniquely* as a linear combination of

the basis elements: $\vec{x} = c_1 \vec{v}_1 + \ldots + c_n \vec{v}_n = \sum_{i=1}^n c_i \vec{v}_i$.

Proof: The fact that basis spans V implies that every $\vec{x} \in V$ can be written as some linear combination of the basis elements.

Suppose we can write an element $\vec{x} = c_1 \vec{v}_1 + \dots + c_n \vec{v}_n = d_1 \vec{v}_1 + \dots + d_n \vec{v}_n$ (*)

as two *different* combinations. Subtracting one from the other, we obtain: $(c_1 - d_1)\vec{v}_1 + \ldots + (c_n - d_n)\vec{v}_n = \vec{0}$.

The left-hand side is a linear combination of the basis elements, and hence vanishes iff all of its coefficients $c_i - d_i = 0$,

meaning that the two linear combinations (*) are one and the same.