2.4 Basis and Dimension

Definition: A basis \mathcal{B} of a vector space V is a finite collection of elements $\vec{v}_{1}, \ldots, \vec{v}_{n} \in V$ that spans V, and is linearly independent.

Example: $\mathcal{B}:=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ basis for \mathbb{R}^{2}. But so is

$$
\left\{\left[\begin{array}{l}
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
3
\end{array}\right]\right\}, \text { as is }\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}, \text { etc. }
$$

Theorem: Every basis \mathcal{B} of \mathbb{R}^{n} consists of exactly n vectors. Furthermore, a set of n vectors $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ is a basis iff the $n \times n$ matrix $\mathbf{A}=\left(\vec{v}_{1} \ldots \vec{v}_{n}\right)$ is nonsingular; in other words $\operatorname{rank} \mathbf{A}=n$.

Theorem: Suppose vector space V has a basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for some $n \in N$. Then every other basis of V has the same number, n, of elements in it. This number is called the dimension of V, and is written $\operatorname{dim} V=n$.

The proof of this theorem rests on the following lemma:
Lemma: Suppose $\vec{v}_{1}, \ldots, \vec{v}_{n}$ span a vector space V. Then every set of $k>n$ elements $\vec{w}_{1}, \ldots, \vec{w}_{k} \in V$ is linearly dependent.

Proof of Lemma: We can write each element $\vec{w}_{j}=\sum_{i=1}^{n} a_{i j} \vec{v}_{i}$ (where $j=1, \ldots, k$), as a linear combination of the spanning set.

Then, $c_{1} \vec{w}_{1}+\ldots+c_{k} \vec{w}_{k}=c_{1} \sum_{i=1}^{n} a_{i 1} \vec{v}_{i}+\ldots+c_{k} \sum_{i=1}^{n} a_{i k} \vec{v}_{i}=\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i j} c_{j} \vec{v}_{i} . \quad$ (collected the \vec{v}_{i})

It is sufficient to prove the lemma to show that $c_{1} \vec{w}_{1}+\ldots+c_{k} \vec{w}_{k}=\sum_{i=1}^{n} \sum_{j=1}^{k} a_{i j} c_{j} \vec{v}_{i}=\overrightarrow{0}$ has a nontrivial
$\vec{c}=\left(c_{1}, \ldots, c_{k}\right)$ solution. Looking at the sigma eq term-wise, each of the n terms' coefficients will be zero when
$\sum_{j=1}^{k} a_{i j} c_{j}=0$ (where $i=1, \ldots, n$). Observe this consists of n equations in $k>n$ unknowns c_{j}.

A previous theorem guarantees that every homogeneous system with more unknowns than equations always has a nontrivial solution $\vec{c} \neq \overrightarrow{0}$, and this immediately implies that $\vec{w}_{1}, \ldots, \vec{w}_{k}$ are linearly dependent.

Proof of the preceding theorem (every basis has same number of elements):
Recall: $\vec{v}_{1}, \ldots, \vec{v}_{m}$ in $V \subseteq \mathbb{R}^{n}$ form a basis of V if they span V and are linearly independent.

Let $\vec{v}_{1}, \ldots, \vec{v}_{p}$ and $\vec{w}_{1}, \ldots, \vec{w}_{q}$ be bases of V.

Since $\vec{v}_{1}, \ldots, \vec{v}_{p}$ are linearly independent and $\vec{w}_{1}, \ldots, \vec{w}_{q}$ span V, we have $p \leq q$, by previous thm.

Likewise, since $\vec{w}_{1}, \ldots, \vec{w}_{q}$ are linearly independent and $\vec{v}_{1}, \ldots, \vec{v}_{p}$ span V, we have $q \leq p$. Therefore, $p=q$.

Examples - Find of the span, basis, dimension of the following:

- $A:\{y=x\} \subset \mathbb{R}^{2}$
$A=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}, \quad \mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}, \quad \operatorname{dim}(A)=1$.
- B: any line in \mathbb{R}^{2} through $\overrightarrow{0}$.
$B=\operatorname{span}\{\vec{u}\}$, for some $\vec{u} \neq \overrightarrow{0}$ on the line, $\mathcal{B}=\{\vec{u}\}, \quad \operatorname{dim}(B)=1$.
- C : any plane in \mathbb{R}^{3} through $\overrightarrow{0}$.

Spanned by two ind. vecs in plane, which also forms basis $\Rightarrow \operatorname{dim}(C)=2$.

- D: $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}17 \\ 42 \\ 0\end{array}\right]\right\}=$

$$
=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \Rightarrow \operatorname{dim}(D)=2 .
$$

- $E: \mathbb{R}^{n}$

$$
\operatorname{span}\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}, \quad \mathcal{B}=\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}, \operatorname{dim}\left(\mathbb{R}^{n}\right)=n
$$

Suppose V is an n-dimensional vector space. Then you should be able to convince yourself that:

- Every set of more than n elements of V is linearly dependent.
- No set of fewer than n elements spans V.
- A set of n elements forms a basis iff it spans V
- A set of n elements forms a basis iff it is linearly independent.

How can you show/prove these results notationally?

Lemma: The elements $\vec{v}_{1}, \ldots, \vec{v}_{n}$ form a basis of V iff every $\vec{x} \in V$ can be written uniquely as a linear combination of
the basis elements: $\vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}=\sum_{i=1}^{n} c_{i} \vec{v}_{i}$.

Proof: The fact that basis spans V implies that every $\vec{x} \in V$ can be written as some linear combination of the basis elements.

Suppose we can write an element $\vec{x}=c_{1} \vec{v}_{1}+\ldots+c_{n} \vec{v}_{n}=d_{1} \vec{v}_{1}+\ldots+d_{n} \vec{v}_{n}$
as two different combinations. Subtracting one from the other, we obtain: $\left(c_{1}-d_{1}\right) \vec{v}_{1}+\ldots+\left(c_{n}-d_{n}\right) \vec{v}_{n}=\overrightarrow{0}$.

The left-hand side is a linear combination of the basis elements, and hence vanishes iff all of its coefficients $c_{i}-d_{i}=0$,
meaning that the two linear combinations $(*)$ are one and the same.

