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2.3 Span and Linear Independence

Definition: Let v 1, , v k be elements of a vector space V. A sum the form c1 v 1  c2 v 2 ck v k   i1
k c i v i, where the

coefficients c1, ,ck are any scalars, is known as a linear combination of the elements v 1, , v k. Their span is the subset
W  spanv 1, , v k  V consisting of all possible linear combinations with scalars c1, ,ck  R.

Proposition: The span W  spanv 1, , v k of any finite collection of vector space elements v 1, , v k  V is a subspace of
the underlying vector space V.

Proof: Recall W  spanv 1, , v m  c1 v 1 cm v m | c i  R .

a) 0  W?

Set c1  c2  cm  0. Then,

c1 v 1 cm v m  0.

b) Closed under addition?

Let a , b  W. Then, there exist constants ai,bi such that:

a  a1 v 1 am v m,

b  b1 v 1 bm v m.

Therefore: a  b  a1  b1v 1 am  bmv m  W.

c) Closed under scalar multiplication?

If a  a1 v 1 am v m and k  R,

ka  ka1v 1 kamv m  W. 

Linear Independence and Dependence

Definition: The vector space elements v 1, , v k  V are called linearly dependent if there exists scalars c1, ,ck, not all zero,
such that c1 v 1 ck v k  0. Elements that are not linearly dependent are called linearly independent.

If v 1, , v m are linearly dependent, it doesn’t mean every v i can be written as a combination of the others.



It implies at least one v i can.

Example:
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7v 1  5v 2  0v 3  v 4. However, v 3 can’t be written in terms of the others.

Thm: Let v 1, , v k  Rn and let Ank  v 1  v k be the corresponding matrix whose columns are the given vectors.

 Vectors v 1, , v k  Rn are linearly dependent iff there is a nonzero solution c  0 to the homogeneous Ac  0.

 Vectors are linearly independent iff the only solution to the homogeneous system Ac  0 is the trivial one, c  0.

 Vector b lies in the span of v 1, , v k iff the linear system Ac  b is compatible, i.e., has at least one solution.

We prove the first statement, leaving the other two as exercises for you.

Proof: The condition that v 1, , v k be linearly dependent is that there exists a nonzero vector

c  c1,c2, ,ckT  0 such that c1 v 1 ck v k  0.

But recall that Ac  c1 v 1 ck v k.

Therefore, linear dependence requires the existence of a nontrivial solution to Ac  0. 

Lemma: Any collection of k  n vectors in Rn is linearly dependent.

Proposition: A set of k vectors in Rn is linearly independent iff the corresponding n  k matrix A has rank k.

In particular, this requires k  n.

Proposition: A collection of k vectors spans Rn iff their n  k matrix has rank n. In particular, this requires k  n.

Determining dependence of v 1, , v m:

Dependent Independent

 at least one is a linear  No v i is combination of others

combination of the others  The only relation is the trivial one:

 there exists at least one nontrivial 0v 1 0v m  0.

"linear relation": c1 v 1 cm v m  0.

Examples:



Two vectors in Rn are linearly

 Dependent if they’re  (one is multiple of other)

 Independent if not .

For three (or more) vectors, need more than parallel criteria.

 None of v 1, v 2, v 3 may be parallel to the others,

but vectors may still be dependent.

 Criteria is whether one is linear combination of other two.

Example: Are
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Method 1: Look for possible relations:

c1
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 c2
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.

From first coordinate, c3 must be 0. Second coordinate, c2 must be 0. Third coordinate, c1  0.

Only relation is trivial  independent.

Method 2:

0 0 2

0 1 1

2 3 5

c1

c2

c3



0

0

0

0 0 2 | 0

0 1 1 | 0

2 3 5 | 0

rref


1 0 0 | 0

0 1 0 | 0

0 0 1 | 0

.

Method 3: Compare vectors to check for dependent system.

First vector dependent? One vector can’t be dependent.



Ensure second vector not multiple of first.

Now check if third vector is a linear combination of the first two.
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, obviously not (first component).

Example: Show that the vectors v 1 

1
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, v 2 
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, v 3 

2
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are linearly independent.

The corresponding 4  3 matrix is: A :

1 2 2

0 3 2

2 1 1

1 1 1

.

Must show this has rank 3.



1 2 2

0 3 2

0 3 3

0 3 3



1 2 2

0 3 2

0 0 1

0 0 0

 Three pivot points imply rank 3.

Which of the following vectors are in their span? b 1 
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Keep in mind, the span consists of sums c1
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, for any choice of c i  R.

So the zero vector 0 can be satisfied when the c i  0.



For the others, you can attempt to solve the system: c1

1

0

2

1

 c2

2

3

1

1

 c3

2

2

1

1



1 2 2

0 3 2

2 1 1

1 1 1

c  b .

Observe that we can attempt to solve them all simultaneously in the following augmented matrix: A | b 1 b 2 b 3

1 2 2 | 1 1 0

0 3 2 | 1 0 1

2 1 1 | 2 0 0

1 1 1 | 1 0 0



1 2 2 | 1 1 0

0 3 2 | 1 0 1

0 3 3 | 0 2 0

0 3 3 | 0 1 0



1 2 2 | 1 1 0

0 3 2 | 1 0 1

0 0 1 | 1 2 1

0 0 0 | 0 1 0



1 2 2 | 1 1 0

0 3 2 | 1 0 1

0 0 1 | 1 2 1

0 0 0 | 0 1 0



1 2 0 | 1 3 2

0 3 0 | 3 4 3

0 0 1 | 1 2 1

0 0 0 | 0 1 0



1 1 0 | 2 1 1

0 3 0 | 3 4 3

0 0 1 | 1 2 1

0 0 0 | 0 1 0



1 1 0 | 2 1 1

0 1 0 | 1 4
3 1

0 0 1 | 1 2 1

0 0 0 | 0 1 0



1 0 0 | 1  1
3 0

0 1 0 | 1 4
3 1

0 0 1 | 1 2 1

0 0 0 | 0 1 0

.

Observe that b 2 has no solution due to the last row.

According to this result, b 1 can be formed by:
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 1v 1  1v 2  1v 3.

And indeed: 1
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Similarly, b 3 can be formed by: 0v 1  1v 2  1v 3 
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.



Suppose a,b,c,d lies in the span of v 1, v 2, v 3. What conditions must a,b,c,d satisfy?

Since k1

1
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1
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

a
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c

d

, we must solve

1 2 2 | a

0 3 2 | b

2 1 1 | c

1 1 1 | d



1 2 2 a

0 3 2 b

0 0 3 3c  3b  6a

0 0 0 3d  3c  3a

.

The last row implies that c  a  d.

That is the only requirement on the a,b,c,d.

However, you can subsequently determine the requirements on the unique solution determined by this vector:

The 3rd row gives us k3  b  a  d.

The 2nd row gives us 3k2  2k3  b  3k2  2b  a  d  b

or k2  b  2
3 a 

2
3 d.

Lastly, from the first row we have: k1  2k2  k3  a  k1  2 b  2
3 a 

2
3 d  b  a  d  a

 k1  4
3 a  b  1

3 d.

Therefore, every vector a,b,c,d such that c  a  d, lies in the span, and specifically:

a,b,c,d  k1 v 1  k2 v 2  k3 v 3  4
3 a  b  1

3 d v 1  b  2
3 a 

2
3 d v 2  b  a  dv 3.


