2.3 Span and Linear Independence

Definition: Let $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be elements of a vector space V. A sum the form $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{k} \vec{v}_{k}=\sum_{i=1}^{k} c_{i} \vec{v}_{i}$, where the coefficients c_{1}, \ldots, c_{k} are any scalars, is known as a linear combination of the elements $\vec{v}_{1}, \ldots, \vec{v}_{k}$. Their span is the subset $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\} \subset V$ consisting of all possible linear combinations with scalars $c_{1}, \ldots, c_{k} \in \mathbb{R}$.

Proposition: The span $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ of any finite collection of vector space elements $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ is a subspace of the underlying vector space V.

Proof: Recall $W=\operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{m}\right\}=\left\{c_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m} \mid c_{i} \in \mathbb{R}\right\}$.
a) $\overrightarrow{0} \in W$?

Set $c_{1}=c_{2}=\ldots=c_{m}=0$. Then,
$c_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}$.
b) Closed under addition?

Let $\vec{a}, \vec{b} \in W$. Then, there exist constants a_{i}, b_{i} such that:
$\vec{a}=a_{1} \vec{v}_{1}+\ldots+a_{m} \vec{v}_{m}$,
$\vec{b}=b_{1} \vec{v}_{1}+\ldots+b_{m} \vec{v}_{m}$.

Therefore: $\vec{a}+\vec{b}=\left(a_{1}+b_{1}\right) \vec{v}_{1}+\ldots+\left(a_{m}+b_{m}\right) \vec{v}_{m} \in W$.
c) Closed under scalar multiplication?

If $\vec{a}=a_{1} \vec{v}_{1}+\ldots+a_{m} \vec{v}_{m}$ and $k \in \mathbb{R}$,
$k \vec{a}=\left(k a_{1}\right) \vec{v}_{1}+\ldots+\left(k a_{m}\right) \vec{v}_{m} \in W$.

Linear Independence and Dependence

Definition: The vector space elements $\vec{v}_{1}, \ldots, \vec{v}_{k} \in V$ are called linearly dependent if there exists scalars c_{1}, \ldots, c_{k}, not all zero, such that $c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}$. Elements that are not linearly dependent are called linearly independent.

If $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are linearly dependent, it doesn't mean every \vec{v}_{i} can be written as a combination of the others.

It implies at least one \vec{v}_{i} can.

Example: $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}7 \\ 10 \\ 0\end{array}\right]\right\}$
$7 \vec{v}_{1}+5 \vec{v}_{2}+0 \vec{v}_{3}=\vec{v}_{4}$. However, \vec{v}_{3} can't be written in terms of the others.

Thm: Let $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{n}$ and let $\mathbf{A}^{n \times k}=\left(\vec{v}_{1} \ldots \vec{v}_{k}\right)$ be the corresponding matrix whose columns are the given vectors.

- Vectors $\vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{R}^{n}$ are linearly dependent iff there is a nonzero solution $\vec{c} \neq \overrightarrow{0}$ to the homogeneous $\mathbf{A} \vec{c}=\overrightarrow{0}$.
- Vectors are linearly independent iff the only solution to the homogeneous system $\mathbf{A} \vec{c}=\overrightarrow{0}$ is the trivial one, $\vec{c}=\overrightarrow{0}$.
- Vector \vec{b} lies in the span of $\vec{v}_{1}, \ldots, \vec{v}_{k}$ iff the linear system $\mathbf{A} \vec{c}=\vec{b}$ is compatible, i.e., has at least one solution.

We prove the first statement, leaving the other two as exercises for you.
Proof: The condition that $\vec{v}_{1}, \ldots, \vec{v}_{k}$ be linearly dependent is that there exists a nonzero vector $\vec{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right)^{T} \neq \overrightarrow{0}$ such that $c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}$.

But recall that $\mathbf{A} \vec{c}=c_{1} \vec{v}_{1}+\ldots+c_{k} \vec{v}_{k}$.

Therefore, linear dependence requires the existence of a nontrivial solution to $\mathbf{A} \vec{c}=\overrightarrow{0}$.

Lemma: Any collection of $k>n$ vectors in \mathbb{R}^{n} is linearly dependent.

Proposition: A set of k vectors in \mathbb{R}^{n} is linearly independent iff the corresponding $n \times k$ matrix \mathbf{A} has rank k.
In particular, this requires $k \leq n$.

Proposition: A collection of k vectors spans \mathbb{R}^{n} iff their $n \times k$ matrix has rank n. In particular, this requires $k \geq n$.

Determining dependence of $\vec{v}_{1}, \ldots, \vec{v}_{m}$:

Dependent

- at least one is a linear combination of the others
- there exists at least one nontrivial

Independent

- No \vec{v}_{i} is combination of others
- The only relation is the trivial one:

$$
0 \vec{v}_{1}+\ldots+0 \vec{v}_{m}=\overrightarrow{0}
$$

"linear relation": $c_{1} \vec{v}_{1}+\ldots+c_{m} \vec{v}_{m}=\overrightarrow{0}$.

Examples:

Two vectors in \mathbb{R}^{n} are linearly...

- Dependent if they're || (one is multiple of other)
- Independent if not $\|$.

For three (or more) vectors, need more than parallel criteria.

- None of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ may be parallel to the others, but vectors may still be dependent.
- Criteria is whether one is linear combination of other two.

Example: Are $\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$ independent?

Method 1: Look for possible relations:

$$
c_{1}\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]+c_{3}\left[\begin{array}{l}
2 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

From first coordinate, c_{3} must be 0 . Second coordinate, c_{2} must be 0 . Third coordinate, $c_{1}=0$.

Only relation is trivial \Rightarrow independent.

Method 2: $\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 1 & 1 \\ 2 & 3 & 5\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
\left[\begin{array}{lll|l}
0 & 0 & 2 & \mid \\
0 & 1 & 1 & \mid \\
2 & 3 & 5 & 0
\end{array}\right] \xrightarrow{\text { rref }}\left[\begin{array}{lll|l}
1 & 0 & 0 & \mid \\
0 & 1 & 0 & \mid \\
0 & 0 & 1 & \mid
\end{array}\right]
$$

Method 3: Compare vectors to check for dependent system.

First vector dependent? One vector can't be dependent.

Ensure second vector not multiple of first.

Now check if third vector is a linear combination of the first two.
$x\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]+y\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$, obviously not (first component).

Example: Show that the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-2 \\ 3 \\ -1 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}2 \\ -2 \\ 1 \\ -1\end{array}\right]$ are linearly independent.

The corresponding 4×3 matrix is: $\mathbf{A}:=\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 3 & -2 \\ 2 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$.

Must show this has rank 3.
$\rightarrow\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 3 & -2 \\ 0 & 3 & -3 \\ 0 & 3 & -3\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 3 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 0\end{array}\right] \Rightarrow \quad$ Three pivot points imply rank 3.

Which of the following vectors are in their span? $\vec{b}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right], \vec{b}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \vec{b}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \overrightarrow{0}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.

Keep in mind, the span consists of sums $c_{1}\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}-2 \\ 3 \\ -1 \\ 1\end{array}\right]+c_{3}\left[\begin{array}{c}2 \\ -2 \\ 1 \\ -1\end{array}\right]$, for any choice of $c_{i} \in \mathbb{R}$.

So the zero vector $\overrightarrow{0}$ can be satisfied when the $c_{i}=0$.

For the others, you can attempt to solve the system: $c_{1}\left[\begin{array}{c}0 \\ 2 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]+c_{3}\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{ccc}0 & 3 & -2 \\ 2 & -1 & 1 \\ 1 & 1 & -1\end{array}\right] \vec{c}=\vec{b}$.

Observe that we can attempt to solve them all simultaneously in the following augmented matrix: $\left[\mathbf{A} \mid \vec{b}_{1} \vec{b}_{2} \vec{b}_{3}\right]$

$$
\begin{aligned}
& \rightarrow\left[\begin{array}{cccc|cc}
1 & -2 & 2 & \mid & 1 & 1
\end{array} 0\right.
\end{aligned}
$$

Observe that \vec{b}_{2} has no solution due to the last row.

According to this result, \vec{b}_{1} can be formed by: $\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right]=1 \vec{v}_{1}+1 \vec{v}_{2}+1 \vec{v}_{3}$.

And indeed: $1\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right]+1\left[\begin{array}{c}-2 \\ 3 \\ -1 \\ 1\end{array}\right]+1\left[\begin{array}{c}2 \\ -2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 1\end{array}\right]$.

Similarly, \vec{b}_{3} can be formed by: $0 \vec{v}_{1}+1 \vec{v}_{2}+1 \vec{v}_{3}=\left[\begin{array}{c}-2 \\ 3 \\ -1 \\ 1\end{array}\right]+\left[\begin{array}{c}2 \\ -2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$.

Suppose (a, b, c, d) lies in the span of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. What conditions must a, b, c, d satisfy?

Since $k_{1}\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 1\end{array}\right]+k_{2}\left[\begin{array}{c}-2 \\ 3 \\ -1 \\ 1\end{array}\right]+k_{3}\left[\begin{array}{c}2 \\ -2 \\ 1 \\ -1\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$, we must solve $\left[\begin{array}{ccc|c}1 & -2 & 2 & a \\ 0 & 3 & -2 & b \\ 2 & -1 & 1 & \mid c \\ 1 & 1 & -1 & d\end{array}\right]$

$$
\rightarrow\left[\begin{array}{cccc}
1 & -2 & 2 & a \\
0 & 3 & -2 & b \\
0 & 0 & -3 & 3 c-3 b-6 a \\
0 & 0 & 0 & -3 d+3 c-3 a
\end{array}\right]
$$

The last row implies that $c=a+d$.

That is the only requirement on the a, b, c, d.
However, you can subsequently determine the requirements on the unique solution determined by this vector:

The 3rd row gives us $k_{3}=b+a-d$.

The 2 nd row gives us $3 k_{2}-2 k_{3}=b \Rightarrow 3 k_{2}-2(b+a-d)=b$

$$
\text { or } k_{2}=b+\frac{2}{3} a-\frac{2}{3} d \text {. }
$$

Lastly, from the first row we have: $k_{1}-2 k_{2}+k_{3}=a \Rightarrow k_{1}-2\left(b+\frac{2}{3} a-\frac{2}{3} d\right)+(b+a-d)=a$

$$
\Rightarrow k_{1}=\frac{4}{3} a+b-\frac{1}{3} d .
$$

Therefore, every vector (a, b, c, d) such that $c=a+d$, lies in the span, and specifically:

$$
(a, b, c, d)=k_{1} \vec{v}_{1}+k_{2} \vec{v}_{2}+k_{3} \vec{v}_{3}=\left(\frac{4}{3} a+b-\frac{1}{3} d\right) \vec{v}_{1}+\left(b+\frac{2}{3} a-\frac{2}{3} d\right) \vec{v}_{2}+(b+a-d) \vec{v}_{3}
$$

