
2.2 Subspaces

Subspaces: Given vector space V (e.g., R3 in the image above), then W (the plane in the image) is a subset of V, and is called a
subspace if:

a W is nonempty (it contains at least one vector),

b Given u , v  W, we have u  v  W, (W is closed under addition)

c Given c  , we have cu  W. (W is closed under scalar multiplication)

And therefore 0  W. Why?

Also, convince yourself that the x-axis and the y-axis (just the axes themselves, no other points), joined together as a subset of
R3, does not constitute a subspace.

Does c  a?

Requirement a ensures that W  .

Examples: Which of the following are subspaces?

A : x,y | x  0,1  R2, 

B : x,y | y  x  R2, . . .

C : x,y, 0  x,y, z | z  0  R3, 

D : 0  Rn, 



E :

x

y

4

: x,y  R  R3, 

More Generally
Theorem: As a result of the subspace properties above, a subspace is a vector space in its own right -

under the same operations of vector addition and scalar multiplication and the same 0 element.

Proof: The proof is immediate. For example, let us check commutivity.

Subspace elements v ,w  W can be regarded as elements of V, in which case v  w  w  v because V is a vector space.

But the closure condition implies that sums also belongs to W, and so the commutivity axiom also holds for elements of W.

Establishing the validity of the other axioms is equally as easy. 

Solution Subspace Thm: For Amn, the solution set of the homogeneous system A x  0 is a subspace of n.

Proof: Let W denote the solution set of the system. If u and v are vectors in W, then Au  Av  0.

Hence: Au  v   Au  Av  0  0  0.

Thus the sum u  v is also in W, and hence W is closed under addition.

Next, if c  R, then Acu   cAu   c0  0.

Thus cu is in W if u is in W. Hence W is also closed under scalar multiplication.

Therefore,W is a subspace of Rn. 

Nonhomogeneous System Solutions Thm: The solution set of a nonhomogeneous system A x  b is never a subspace.

Proof: Let’s do proof by contradiction. Let u be a solution in W, the set of solutions to A x  b .

And let us make the dubious assumption that W is a subspace.

Let c  0  R. By closure under scalar multiplication, cu  0u  0 is a solution.

Therefore, A 0  0  b . (!?!)



But we assumed the system was nonhomogeneous: b  0.

So we have a contradiction, and our assumption that the set of solutions W

was a subspace must have been incorrect. 

Video Tutorial (visually rich and intuitive): https://youtu.be/fNk_zzaMoSs

Exercises

Problem. Assume W is the set of all vectors in 4 such that x1  3x3 and x2  4x4.

Apply the theorems in this section to determine whether or not W is a subspace of 4.

W  3c, 4d, c, d .

First, note that the subspace is nonempty since 3,4,1, 1  W, where c,d  1.

We arbitrarily choose two vectors from W by arbitrarily choosing four constants c1,d1,c2,d2  ,

giving us 3c1, 4d1, c1, d1 and 3c2, 4d2, c2, d2 . We then test them for closure under addition:

3c1, 4d1, c1, d1  3c2, 4d2, c2, d2

 3c1  3c2, 4d1  4d2, c1  c2, d1  d2

 3c1  c2, 4d1  d2, c1  c2, d1  d2  W

This is because it has the prescribed format 3c, 4d, c, d , where c : c1  c2 and d : d1  d2.

Now to test scalar multiplication:

 3c1, 4d1, c1, d1  3c1, 4d1, c1, d1  W  3c, 4d, c, d

where c : c1 and d : d1.

Therefore,W is nonempty, closed under addition, and scalar multiplication, and is a subspace of 4. 

Problem. Reduce the given system to echelon form to find a single solution vector u such that the solution space is the set of
all scaler multiples of u .

x1  3x2  3x3  3x4  0,
2x1  7x2  5x3  x4  0,



2x1  7x2  4x3  4x4  0.

A 

1 3 3 3

2 7 5 1

2 7 4 4

trust me


1 0 0 6

0 1 0 4

0 0 1 3

Thus x4  t is a parameter (a.k.a. free variable).

We solve for x1  6t, x2  4t, and x3  3t. So,

x  x1,x2,x3,x4  6t, 4t,3t, t  tu , where u  6,4,3,1.

Problem. For the following system of equations, find two solution vectors u and v such that the solution space is the set of
all linear combinations of the form su  t v .

x1  4x2  3x3  7x4  0
2x1  x2  x3  7x4  0
x1  2x2  3x3  11x4  0

A 

1 4 3 7

2 1 1 7

1 2 3 11

trust me


1 0 1 5

0 1 1 3

0 0 0 0

.

Thus, x3  s and x4  t are free variables. We solve for x2  s  3t, and x1  s  5t. So

x  x1,x2,x3,x4  s  5t,  s  3t, s, t

 s,s, s, 0  5t,3t, 0, t  su  t v , where u  1,1,1,0 and v  5,3,0,1.

Problem. Let A be an n  n matrix, b be a nonzero vector, and x 0 be a solution vector to the system Ax  b .

Show that x2 is another solution iff x2  x 0 is a solution of the homogeneous system Ay  0.

We are given: Ax 0  b .

Need to show that: Ax2  b  Ax2  x 0  0.

Starting with the left assumption, and trying to show the thing on the right, we have:
Ax2  x 0  Ax2  Ax 0  b  b  0. 



Going from right to left, we have: Ax2  x 0  Ax2  Ax 0  Ax2  b  0, therefore Ax2  b . Q.E.D.


