2.1 Real Vector Spaces

Vector: mathematical object consisting of direction \& magnitude.

A vector, notated \vec{v}, \mathbf{v}, or $\overrightarrow{P Q}$, is often drawn as an arrow starting at initial point P (tail), and ending at terminal point Q (tip,head).

Magnitude: length of arrow.

\vec{u}, \vec{v} are equivalent $(\vec{u}=\vec{v})$ if they share same magnitude $\&$ direction, even with different P (and therefore different Q).

We sometimes write $\vec{v}=\langle 2,1\rangle$ to mean $(2,1)$. But $\langle 2,1\rangle$ refers to any vector with same magnitude/direction located anywhere in \mathbb{R}^{2}.

Zero Vector: $\mathbf{0}$ or $\overrightarrow{0}$, has length 0 . Only vector with no (or any) direction.

In 2 D (similarly in 3D), if tail of \vec{a} is at the origin, then tip has coordinates $\left(a_{1}, a_{2}\right)$.

These are the components of \vec{a}. We write $\vec{a}=\left\langle a_{1}, a_{2}\right\rangle$.

A vector space is a set V equipped with two operations:
Vector Addition (Triangle Law): adding any pair of vectors $\vec{a}, \vec{b} \in V$ produces another vector $\vec{a}+\vec{b} \in V$; If \vec{a}, \vec{b} are positioned with tail of \vec{b} at tip of \vec{a}, then $\vec{a}+\vec{b}$ is from tail of \vec{a} to tip of \vec{b}.

Geometric: Triangle \& Parallelogram

Scalar Multiplication: multiplying a vector $\vec{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c \vec{v} \in V$.

$$
c \vec{v}=c\left\langle v_{1}, v_{2}\right\rangle=\left\langle c v_{1}, c v_{2}\right\rangle
$$

Algebraic

Geometric

These are subject to the following axioms, valid for all $\vec{u}, \vec{v}, \vec{w} \in V$ and all scalars $c, d \in \mathbb{R}$.
Commutativity of Addition: $\vec{v}+\vec{w}=\vec{w}+\vec{v}$

Associativity of Addition: $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$.

Additive Identity: There is a zero element $\overrightarrow{0} \in V$ satisfying $\vec{v}+\overrightarrow{0}=\vec{v}=\overrightarrow{0}+\vec{v}$.

Additive inverse: For each $\vec{v} \in V$, there is an element $-\vec{v} \in V$ such that $\vec{v}+(-\vec{v})=\overrightarrow{0}=(-\vec{v})+\vec{v}$.

Distributivity: $(c+d) \vec{v}=(c \vec{v})+(d \vec{v})$, and $c(\vec{v}+\vec{w})=(c \vec{v})+(c \vec{w})$.

Associativity of Scalar Multiplication: $c(d \vec{v})=(c d) \vec{v}$.

Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies $1 \vec{v}=\vec{v}$.

Vector spaces are not limited to literal vectors! Example: polynomials of degree 3 or less.

$$
P_{3}(x):=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}, \text { for real } a_{i} .
$$

A vector space, or more generally a linear space is a set of objects with a reasonable sense of addition and scalar multiplication.

Polynomial spaces satisfy vector space properties:

Given p_{1}, p_{2}, p_{3} in P_{3}.

- $p_{1}+p_{2}=p_{2}+p_{1}$
- $p_{1}+\left(p_{2}+p_{3}\right)=\left(p_{1}+p_{2}\right)+p_{3}$
- $p_{1}+0=0+p_{1}=p_{1}$
- $p_{1}+\left(-p_{1}\right)=\left(-p_{1}\right)+p_{1}=0$
$\bullet(c+k) p_{1}=c p_{1}+k p_{1}$, for any real c, k; and $k\left(p_{1}+p_{2}\right)=k p_{1}+k p_{2}$, for any real k
- $c\left(k p_{1}\right)=(c k) p_{1}$
- $1\left(p_{1}\right)=p_{1}$

The following are elementary consequences of the vector space axioms:

- $0 \vec{v}=\overrightarrow{0}$,
- $(-1) \vec{v}=-\vec{v}$,
- $c \overrightarrow{0}=\overrightarrow{0}$,
- If $c \vec{v}=\overrightarrow{0}$, then either $c=0$ or $\vec{v}=\overrightarrow{0}$.

Function Spaces (Linear Spaces of Functions)

Let $F=\{$ all real valued functions on $\mathbb{R}\} ;$ includes all polynomials, trig functions, exponentials, etc...

Observe for \mathbf{f}, \mathbf{g} in F, we have: $\quad(\mathbf{f}+\mathbf{g})(x)=\mathbf{f}(x)+\mathbf{g}(x) \quad$ and $\quad(c f)(x)=c(f(x))$.

The properties of a linear space follow since these functions are real valued.

What is the neutral element? $z(x)$

Linear Space of $m \times n$ Matrices

Example: 2×2 matrices. Matrices like $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with neutral element $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and multiplicative identity element $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Infinite Dimensional Linear Spaces

\mathbb{R}^{∞}, space of vectors $\vec{v}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$, where a_{i} in \mathbb{R}.

Polynomials: $P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, where a_{i} in \mathbb{R}, and ALL n in $\{0,1,2, \ldots\}$.

Verify that they satisfy the axioms.

