Announcements

1.8 General Linear Systems

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
0 & 7 & 3 & 4 & 1 \\
0 & 0 & 2 & 0 & -5 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
\text { Zeros form a staircase }
\end{gathered}
$$

Definition: A matrix \mathbf{U} is said to be in echelon form provided it has the following two properties (staircase properties):

- Every row of \mathbf{U} that conains only zeros (if any) lies beneath every row that contains a nonzero element.
- In the other rows, the first nonzero element (pivot) lies strictly to the right of the first nonzero element in the preceding row (if there is a preceding row).

After reduction to echelon form, the variables corresponding to the columns with pivots, are referred to as basic variables.
The other variables are referred to as free variables.

$$
\left[\begin{array}{ccccc}
0 & 2 & 5 & 0 & 0 \\
0 & 0 & 0 & 3 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

So if our reduction resulted in the above echelon matrix, we would have 2 and 3 as pivots, with x_{2}, x_{4} as basic variables and x_{1}, x_{3} as free variables.

Proposition: Every matrix can be reduced to row echelon form by a sequence of type 1 and/or type 2 row operations.

Definition: The rank of a matrix is the number of pivots. The rank of a matrix is the dimension of the vector space generated (or spanned) by its columns.

Proposition: $\mathbf{A}^{n \times n}$ is nonsingular iff its rank is equal to n.

Theorem: A system $\mathbf{A} \vec{x}=\vec{b}$ has either 0,1 , or ∞ solutions.

Example:

The linear system:

$$
\begin{aligned}
a_{1} x+b_{1} y & =c_{1} \\
a_{2} x+b_{2} y & =c_{2} \\
a_{3} x+b_{3} y & =c_{3}
\end{aligned}
$$

of three equations in two unknowns (x, y) represents three lines L_{1}, L_{2}, and L_{3} in the $x y$-plane.
The figures below show possible configurations of these lines. Describe the solution set of each:

Homogeneous Systems

Definition: A system $\mathbf{A} \vec{x}=\vec{b}$ is homogeneous if the $b_{1}, b_{2}, \ldots, b_{n}$ on the RHS are all zeros.
Otherwise, it is nonhomogeneous.

$$
\left[\begin{array}{ccc|c}
a_{11} & a_{12} & a_{13} & 0 \\
a_{21} & a_{22} & a_{23} & 0
\end{array}\right] \quad\left[\begin{array}{lll|l}
a_{11} & a_{12} & a_{13} & 1 \\
a_{21} & a_{22} & a_{23} & 0
\end{array}\right]
$$

Definition: A solution to $\mathbf{A} \vec{x}=\vec{b}$ is called trivial if the solution consists of $x_{1}=x_{2}=\ldots=x_{n}=0$.

You should convince yourself that the trivial solution is always a solution to a homogeneous system.

$$
\mathbf{H}=\left[\begin{array}{lllll}
a_{11} & a_{12} & a_{13} & \mid & 0 \\
a_{21} & a_{22} & a_{23} & \mid & 0 \\
a_{31} & a_{32} & a_{33} & \mid & 0 \\
a_{41} & a_{42} & a_{43} & \mid & 0
\end{array}\right] \Rightarrow \begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=0 \\
& a_{21} x+a_{22} y+a_{23} z=0 \\
& a_{31} x+a_{32} y+a_{33} z=0 \\
& a_{41} x+a_{42} y+a_{43} z=0
\end{aligned} \quad \Rightarrow \begin{aligned}
& a_{11} \cdot 0+a_{12} \cdot 0+a_{13} \cdot 0=0 \\
& a_{21} \cdot 0+a_{22} \cdot 0+a_{23} \cdot 0=0 \\
& a_{31} \cdot 0+a_{32} \cdot 0+a_{33} \cdot 0=0 \\
& a_{41} \cdot 0+a_{42} \cdot 0+a_{43} \cdot 0=0
\end{aligned}
$$

Observe this is true irrespective of what the $a_{i j}$ are.

What if you knew that \mathbf{H} had at least one nontrivial solution?
Could you conclude something about how many solutions it has?

What about a homogeneous linear system \mathbf{H} with more variables (columns) than equations (rows) how many solutions?

$$
\mathbf{H}=\left[\begin{array}{lll|l}
a_{11} & a_{12} & a_{13} & 0 \\
a_{21} & a_{22} & a_{23} & 0
\end{array}\right]
$$

$$
\rightarrow \quad \widetilde{\mathbf{H}}=\left[\begin{array}{lll|l}
1 & 0 & c_{13} & 0 \\
0 & 1 & c_{23} & 0
\end{array}\right] ? ?
$$

Theorem: A homogeneous system $\mathbf{A} \vec{x}=\overrightarrow{0}$ of m equations in n unknowns has a nontrivial solution $\vec{x} \neq \overrightarrow{0}$ iff the rank of \mathbf{A} is $r<n$.

If $m<n$, the system always has a nontrivial solution. If $m=n$, the system has a nontrivial solution iff \mathbf{A} is singular.

