Announcements

1.6 Transposes and Symmetric Matrices

Transpose:

If $\mathbf{A} = \begin{bmatrix} \mathbf{c} & \mathbf{a} & \mathbf{t} \\ p & e & n \\ \mathbf{m} & \mathbf{o} & \mathbf{m} \end{bmatrix}$, then $\mathbf{A}^T = \begin{bmatrix} \mathbf{c} & p & \mathbf{m} \\ \mathbf{a} & e & \mathbf{o} \\ \mathbf{t} & n & \mathbf{m} \end{bmatrix}$.

In particular: $\mathbf{B} = \mathbf{A}^T$ means that $b_{ij} = a_{ji}$.

matrix_transpose_animation.gif See animation in class

Most vectors are column vectors, but to conserve space in text, these are often written as (a_1, \ldots, a_n) or $[a_1 \ldots a_n]^T$.

Observe that the transpose of a lower triangular matrix is upper triangular.

Γ	a_{11}	a_{12}	<i>a</i> ₁₃	_	Γ	a_{11}	0	0	
	0	a_{22}	<i>a</i> ₂₃	\xrightarrow{T}		a_{12}	<i>a</i> ₂₂	0	
	0	0	<i>a</i> ₃₃			<i>a</i> ₁₃	<i>a</i> ₂₃	<i>a</i> ₃₃	

Observe that a scalar $(1 \times 1 \text{ matrix})$ is its own transpose.

Special case: Consider the row vector $\vec{v}^T = [v_1 \dots v_n]$ and a column vector $\vec{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$ of the same size.

Multiplying these: $\vec{v}^T \vec{w} \stackrel{?}{=} \left(\vec{v}^T \vec{w} \right)^T = \vec{w}^T \vec{v}.$

The first equal sign is justified because their product is a scalar, and a scalar is its own transpose.

$$38 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 38$$

Transpose Properties:

- $\bigstar \left(\mathbf{A}^T \right)^T = \mathbf{A}$
- $\mathbf{\mathbf{\diamond}} (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- $\bigstar (c\mathbf{A})^T = c\mathbf{A}^T$
- $\mathbf{\bullet} (\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T}\mathbf{A}^{T} \qquad (\text{ recall: } (\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1})$

Lemma: If **A** is a nonsingular matrix, so is \mathbf{A}^T , and its inverse is denoted by: $\mathbf{A}^{-T} := (\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.

Proof: Let $\mathbf{X} = (\mathbf{A}^{-1})^T$. Must show $\mathbf{X}\mathbf{A}^T = \mathbf{I} = \mathbf{A}^T\mathbf{X}$.

We have $\mathbf{X}\mathbf{A}^T = (\mathbf{A}^{-1})^T \mathbf{A}^T = (\mathbf{A}\mathbf{A}^{-1})^T$ (since $(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$)

So, $\mathbf{X}\mathbf{A}^T = \mathbf{I}^T = \mathbf{I}$.

The proof that $\mathbf{A}^T \mathbf{X} = \mathbf{I}$ is similar, and so $(\mathbf{A}^{-1})^T$ is the inverse of \mathbf{A}^T .

Note that we have also shown with the same calculations that $\mathbf{X} = (\mathbf{A}^T)^{-1}$.

Factorization of Symmetric Matrices

Definition: A matrix is called symmetric if it equals its own transpose: $\mathbf{A} = \mathbf{A}^{T}$.

Theorem: A symmetric matrix **A** is regular **iff** it can be factored as $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$, where **L** is a lower unitriangular matrix and **D** is a diagonal matrix with nonzero diagonal entries.

Proof: \Leftarrow This is trivial since \mathbf{L}^T is upper triangular, and so by previous thm ($\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{V}$) \mathbf{A} is regular.

 $\Rightarrow We already know that we can factor A = LDV (since A regular)$ (*)

We take the transpose of this equation: $\mathbf{A}^T = (\mathbf{L}\mathbf{D}\mathbf{V})^T = \mathbf{V}^T\mathbf{D}^T\mathbf{L}^T = \mathbf{V}^T\mathbf{D}\mathbf{L}^T$, (**) (since diagonal matrices are automatically symmetric).

Observe that \mathbf{V}^T is lower unitriangular, and \mathbf{L}^T is upper unitriangular. Therefore, (* *) is the LDV factorization of \mathbf{A}^T .

In particular, if A is symmetric, then: $LDV = A = A^{T} = V^{T}DL^{T}$.

Uniqueness of the LDV factorization implies that $\mathbf{L} = \mathbf{V}^T$ and $\mathbf{V} = \mathbf{L}^T$.

Replacing V by \mathbf{L}^T in (*) establishes the factorization $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$.

True or false: If **A** is symmetric, then A^2 is symmetric.

Recall: **AB** =
$$[c_{ij}]$$
, where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.

So, if **B** = **A**, then $\mathbf{A}^2 = [c_{ij}]$, where $c_{ij} = \sum_{k=1}^n a_{ik} a_{kj}$ and

 $c_{ji} = \sum_{k=1}^{n} a_{jk} a_{ki}$ (but we get to use the symmetry of **A**) $= \sum_{k=1}^{n} a_{ik} a_{kj} = c_{ij}.$ (symmetry of **A** implies $a_{ik} = a_{ki}$ and $a_{kj} = a_{jk}$)

And so A^2 is symmetric.

True or false: If **A** is a nonsingular symmetric matrix, then \mathbf{A}^{-1} is also symmetric.

Since **A** is symmetric, then $\mathbf{A}^T = \mathbf{A}$. Must show $(\mathbf{A}^{-1})^T = \mathbf{A}^{-1}$.

Observe that $(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1} = (\mathbf{A})^{-1} = \mathbf{A}^{-1}$.