Announcements

1.6 Transposes and Symmetric Matrices

Transpose:

If $\mathbf{A}=\left[\begin{array}{ccc}\mathbf{c} & \mathbf{a} & \mathbf{t} \\ p & e & n \\ \mathbf{m} & \mathbf{o} & \mathbf{m}\end{array}\right]$, then $\mathbf{A}^{T}=\left[\begin{array}{ccc}\mathbf{c} & p & \mathbf{m} \\ \mathbf{a} & e & \mathbf{o} \\ \mathbf{t} & n & \mathbf{m}\end{array}\right]$.
matrix_transpose_animation.gif See animation in class

In particular: $\mathbf{B}=\mathbf{A}^{T}$ means that $b_{i j}=a_{j i}$.

Most vectors are column vectors, but to conserve space in text, these are often written as $\left(a_{1}, \ldots, a_{n}\right)$ or $\left[a_{1} \ldots a_{n}\right]^{T}$.

Observe that the transpose of a lower triangular matrix is upper triangular.

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23} \\
0 & 0 & a_{33}
\end{array}\right] \stackrel{T}{\rightarrow}\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{12} & a_{22} & 0 \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

Observe that a scalar (1×1 matrix $)$ is its own transpose.

Special case: Consider the row vector $\vec{v}^{T}=\left[v_{1} \ldots v_{n}\right]$ and a column vector $\vec{w}=\left[\begin{array}{c}w_{1} \\ \vdots \\ w_{n}\end{array}\right]$ of the same size.
Multiplying these: $\vec{v}^{T} \vec{w} \stackrel{?}{=}\left(\vec{v}^{T} \vec{w}\right)^{T}=\vec{w}^{T} \vec{v}$.

The first equal sign is justified because their product is a scalar, and a scalar is its own transpose.

$$
38=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{lll}
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=38
$$

Transpose Properties:

$$
\begin{aligned}
& \left(\mathbf{A}^{T}\right)^{T}=\mathbf{A} \\
& (\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T} \\
& (c \mathbf{A})^{T}=c \mathbf{A}^{T} \\
& (\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T} \quad\left(\text { recall: }(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}\right)
\end{aligned}
$$

Lemma: If \mathbf{A} is a nonsingular matrix, so is \mathbf{A}^{T}, and its inverse is denoted by: $\mathbf{A}^{-T}:=\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$.

Proof: Let $\mathbf{X}=\left(\mathbf{A}^{-1}\right)^{T} . \quad$ Must show $\mathbf{X} \mathbf{A}^{T}=\mathbf{I}=\mathbf{A}^{T} \mathbf{X}$.

$$
\begin{aligned}
& \text { We have } \mathbf{X} \mathbf{A}^{T}=\left(\mathbf{A}^{-1}\right)^{T} \mathbf{A}^{T}=\left(\mathbf{A} \mathbf{A}^{-1}\right)^{T} \quad\left(\text { since }(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}\right) \\
& \text { So, } \mathbf{X A} \mathbf{A}^{T}=\mathbf{I}^{T}=\mathbf{I} \text {. }
\end{aligned}
$$

The proof that $\mathbf{A}^{T} \mathbf{X}=\mathbf{I}$ is similar, and so $\left(\mathbf{A}^{-1}\right)^{T}$ is the inverse of \mathbf{A}^{T}.

Note that we have also shown with the same calculations that $\mathbf{X}=\left(\mathbf{A}^{T}\right)^{-1}$.

Factorization of Symmetric Matrices

Definition: A matrix is called symmetric if it equals its own transpose: $\mathbf{A}=\mathbf{A}^{T}$.

Theorem: A symmetric matrix \mathbf{A} is regular iff it can be factored as $\mathbf{A}=\mathbf{L D L}^{T}$, where \mathbf{L} is a lower unitriangular matrix and \mathbf{D} is a diagonal matrix with nonzero diagonal entries.

Proof: \Leftarrow This is trivial since \mathbf{L}^{T} is upper triangular, and so by previous thm $(\mathbf{A}=\mathbf{L D V}) \mathbf{A}$ is regular.
\Rightarrow We already know that we can factor $\mathbf{A}=\mathbf{L D V}$ (since \mathbf{A} regular)

We take the transpose of this equation: $\mathbf{A}^{T}=(\mathbf{L D V})^{T}=\mathbf{V}^{T} \mathbf{D}^{T} \mathbf{L}^{T}=\mathbf{V}^{T} \mathbf{D} \mathbf{L}^{T}, \quad(* *)$ (since diagonal matrices are automatically symmetric).

Observe that \mathbf{V}^{T} is lower unitriangular, and \mathbf{L}^{T} is upper unitriangular. Therefore, $(* *)$ is the $\mathbf{L D V}$ factorization of \mathbf{A}^{T}.

In particular, if \mathbf{A} is symmetric, then: $\mathbf{L D V}=\mathbf{A}=\mathbf{A}^{T}=\mathbf{V}^{T} \mathbf{D} \mathbf{L}^{T}$.

Uniqueness of the LDV factorization implies that $\mathbf{L}=\mathbf{V}^{T}$ and $\mathbf{V}=\mathbf{L}^{T}$.

Replacing \mathbf{V} by \mathbf{L}^{T} in $(*)$ establishes the factorization $\mathbf{A}=\mathbf{L} \mathbf{D L}{ }^{T}$.

True or false: If \mathbf{A} is symmetric, then \mathbf{A}^{2} is symmetric.

Recall: $\mathbf{A B}=\left[c_{i j}\right]$, where $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$.

So, if $\mathbf{B}=\mathbf{A}$, then $\mathbf{A}^{2}=\left[c_{i j}\right]$, where $c_{i j}=\sum_{k=1}^{n} a_{i k} a_{k j}$ and

$$
\left.c_{j i}=\sum_{k=1}^{n} a_{j k} a_{k i} \quad \text { (but we get to use the symmetry of } \mathbf{A}\right)
$$

$$
=\sum_{k=1}^{n} a_{i k} a_{k j}=c_{i j} . \quad\left(\text { symmetry of A implies } a_{i k}=a_{k i} \text { and } a_{k j}=a_{j k}\right)
$$

And so \mathbf{A}^{2} is symmetric.

True or false: If \mathbf{A} is a nonsingular symmetric matrix, then \mathbf{A}^{-1} is also symmetric.

Since \mathbf{A} is symmetric, then $\mathbf{A}^{T}=\mathbf{A} . \quad$ Must show $\left(\mathbf{A}^{-1}\right)^{T}=\mathbf{A}^{-1}$.

Observe that $\left(\mathbf{A}^{-1}\right)^{T}=\left(\mathbf{A}^{T}\right)^{-1}=(\mathbf{A})^{-1}=\mathbf{A}^{-1}$.

