Announcements

1.4-1.5 Pivoting and Permutations; Matrix Inverses

How do you solve $\mathbf{A} \vec{x}=\vec{b}$ if \mathbf{A} isn't regular?

Example: $\left[\begin{array}{ccc|c}0 & 1 & 2 & \mid \\ 1 & 3 & 4 & \mid \\ 0 & 0 & 1 & b_{2} \\ b_{3}\end{array}\right]$

Observe this is just the system of equations: $x_{2}+2 x_{3}=b_{1}, x_{1}+3 x_{2}+4 x_{3}=b_{2}$, and $x_{3}=b_{3}$.

Obviously, the order in which we listed these equations does not change the solution to the system.

So we are allowed to list them as: $x_{1}+3 x_{2}+4 x_{3}=b_{2}, x_{2}+2 x_{3}=b_{1}$, and $x_{3}=b_{3}$.

This gives us the augmented matrix: $[\widetilde{\mathbf{A}} \mid \overrightarrow{\vec{b}}]=\left[\begin{array}{lll|l}1 & 3 & 4 & b_{2} \\ 0 & 1 & 2 & \mid \\ 0 & 0 & 1 & b_{1} \\ b_{3}\end{array}\right]$,
where $\widetilde{\mathbf{A}}$ is now regular, and this system has the same solutions as the original \mathbf{A}.

This justifies the row operation \#2 of interchanging two rows, or pivoting.

Definition: A square matrix is called nonsingular if it can be reduced to upper triangular form with all nonzero diagonal elements through row operations of types \#1 and \#2. (i.e., add scalar multiple of one row to a lower row, and/or pivots)

Theorem: $\mathbf{A} \vec{x}=\vec{b}$ has unique solution for every choice of \vec{b} iff \mathbf{A} is square \& nonsingular.

Proof of \Leftarrow : Nonsingularity implies reduction to upper triangular $\widetilde{\mathbf{A}}$, having same solution.
Proof of \Rightarrow : Section 1.8.

Observe that interchanging rows of a matrix can be accomplished by an elementary matrix, for example:

If $\mathbf{P}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$, this will interchange the first two rows of a 3×3 matrix.

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & a & a \\
b & b & b \\
c & c & c
\end{array}\right]=\left[\begin{array}{lll}
b & b & b \\
a & a & a \\
c & c & c
\end{array}\right]
$$

Definition: A permutation matrix \mathbf{P} is a matrix obtained from the identity matrix by any combination of row interchanges.

Lemma: \mathbf{P} is a permutation matrix iff each row of \mathbf{P} contains all 0 entries except for a single 1 , and in addition, each column of \mathbf{P} also contains all 0 entries except for a single 1.

Permuted LU Factorization

Note: For nonsingular matrices, to convert them to upper triangular form, we can choose to perform the necessary pivots first, and subsequently perform the required type 1 row operations. So, then PA is regular, and by previous theorem can be factored as $\mathbf{P A}=\mathbf{L U}$.

How to construct the permuted LU factorization:

Start out with \mathbf{A}, and two identity matrices. One will become \mathbf{L}, and the other \mathbf{P}.

Then, Gaussian reduce \mathbf{A}, recording each pivot on the \mathbf{L} matrix, and any type 1 operation on the \mathbf{P} matrix.

Example: Let $\mathbf{A}=\left[\begin{array}{ccc}0 & 2 & -5 \\ 4 & -3 & -6 \\ 2 & -2 & 0\end{array}\right]$. Find permutation, lower triangular,
and upper triangular matrices $\mathbf{P}, \mathbf{L}, \mathbf{U}$ such that $\mathbf{P A}=\mathbf{L U}$.

So we start out with $\mathbf{L}_{0}=\mathbf{P}_{0}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

And we notice right away that the first row of \mathbf{A} will not work, so we interchange it with the 3rd row:

$$
\mathbf{A}_{1}=\left[\begin{array}{ccc}
2 & -2 & 0 \\
4 & -3 & -6 \\
0 & 2 & -5
\end{array}\right]
$$

Recording this in \mathbf{P} gives us $\mathbf{P}_{1}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$.

Then we proceeding with a type 1 row operation, we have:
$\mathbf{A}_{2}=\left[\begin{array}{ccc}2 & -2 & 0 \\ 0 & 1 & -6 \\ 0 & 2 & -5\end{array}\right]$. Recording this in \mathbf{L}, gives us $\mathbf{L}_{1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Next, another type 1 operation: $\mathbf{A}_{3}=\mathbf{U}=\left[\begin{array}{ccc}2 & -2 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 7\end{array}\right]$, recording this in \mathbf{L}, gives us $\mathbf{L}_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]$.

Therefore: $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 2 & -5 \\ 4 & -3 & -6 \\ 2 & -2 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{ccc}2 & -2 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 7\end{array}\right] \quad$ OR $\quad \mathbf{P}_{1} \mathbf{A}=\mathbf{L}_{2} \mathbf{U}$.

So, we have generalized LU factorization to matrices which require pivots:
Theorem: Given $\mathbf{A}^{n \times n}$. The following conditions are equivalent:

- A is nonsingular.
- A has n nonzero pivots.
- A admits a permuted LU factorization: $\mathbf{P A}=\mathbf{L U}$.

Matrix Inverses (§1.5)

Recall from previous mathematics that if $a \neq 0$,
then there is a (unique) number $b=a^{-1}=\frac{1}{a}$ such that $a b=b a=1$.
We call this number its inverse, and we say these nonzero numbers are invertible.

Does this exist for matrices? Kind of, but we must change the assumption a bit.

Instead of $\mathbf{A} \neq 0$, we need something called the determinant of \mathbf{A} to be nonzero.

Definition: We say $\mathbf{A}^{n \times n}$ is invertible if there exists \mathbf{B} such that $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$.
If \mathbf{B} exists, then \mathbf{B} is \mathbf{A} 's inverse, and is commonly denoted \mathbf{A}^{-1}.

But only square matrices can have both, so only square matrices can be invertible.

2×2 Matrices:

Given: $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
\mathbf{A} is invertible if $a d-b c$ (its determinant) is nonzero.

Proof: Let $X=\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]$ be it's inverse. So the right inverse condition is:
$\mathbf{A X}=\left[\begin{array}{cc}a x+b z & a y+b w \\ c x+d z & c y+d w\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

Solving the system of four equations, we find: $x=\frac{d}{a d-b c}, y=-\frac{b}{a d-b c}, z=-\frac{c}{a d-b c}, w=\frac{a}{a d-b c}$,

$$
\text { provided } a d-b c \neq 0 .
$$

In which case (in this 2×2 example) we have inverse: $\mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
(One-over-Determinant, Swap, then Signs)

Theorem: $\mathbf{A}^{n \times n}$ has an inverse iff \mathbf{A} is nonsingular.
(proof provided later)

Lemma: The inverse of a square matrix, if it exists, is unique.

Proof: Suppose \mathbf{X} satisfies $\mathbf{X A}=\mathbf{A X}=\mathbf{I}$ and \mathbf{Y} satisfies $\mathbf{Y A}=\mathbf{A Y}=\mathbf{I}$.

By associativity: $\mathbf{X}=\mathbf{X I}=\mathbf{X}(\mathbf{A Y})=(\mathbf{X A}) \mathbf{Y}=\mathbf{I} \mathbf{Y}=\mathbf{Y}$.

Lemma: If \mathbf{A} is an invertible matrix, then \mathbf{A}^{-1} is also invertible and $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$.

Proof: The matrix inverse equations $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}=\mathbf{A} \mathbf{A}^{-1}$ are sufficient to prove that \mathbf{A} is the inverse of \mathbf{A}^{-1}.

Lemma: If \mathbf{A} and \mathbf{B} are invertible matrices of the same size, then their product, $\mathbf{A B}$, is invertible, and $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
Note that the order of the factors is reversed under inversion.

Proof: Let $\mathbf{X}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.

Then, by associativity, $\mathbf{X}(\mathbf{A B})=\mathbf{B}^{-1} \mathbf{A}^{-1} \mathbf{A B}=\mathbf{B}^{-1} \mathbf{I B}=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}$,
$(\mathbf{A B}) \mathbf{X}=\mathbf{A B B}^{-1} \mathbf{A}^{-1}=\mathbf{A I A}^{-1}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$.

Thus \mathbf{X} is both a left and right inverse for the product matrix $\mathbf{A B}$.
(D) Warning: in general, $(\mathbf{A}+\mathbf{B})^{-1} \neq \mathbf{A}^{-1}+\mathbf{B}^{-1}$.

Example: Show that if \mathbf{A} is a nonsingular matrix, so is every power \mathbf{A}^{n}.

Recall that nonsingular matrices are square matrices. Also, \mathbf{A} is nonsingular iff it has an inverse \mathbf{A}^{-1}.

Observe that $\mathbf{A}^{n}\left(\mathbf{A}^{-1}\right)^{n}=(\mathbf{A} \mathbf{A} \ldots \mathbf{A} \mathbf{A})\left(\mathbf{A}^{-1} \mathbf{A}^{-1} \ldots \mathbf{A}^{-1} \mathbf{A}^{-1}\right)=(\mathbf{A} \mathbf{A} \ldots \mathbf{A})\left(\mathbf{A A}^{-1}\right)\left(\mathbf{A}^{-1} \mathbf{A}^{-1} \ldots \mathbf{A}^{-1}\right)$

$$
=(\mathbf{A} \mathbf{A} \ldots \mathbf{A}) \mathbf{I}\left(\mathbf{A}^{-1} \mathbf{A}^{-1} \ldots \mathbf{A}^{-1}\right)=(\mathbf{A} \mathbf{A} \ldots \mathbf{A})\left(\mathbf{A}^{-1} \mathbf{A}^{-1} \ldots \mathbf{A}^{-1}\right)=\ldots=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I} .
$$

Therefore, \mathbf{A}^{n} has an inverse of $\left(\mathbf{A}^{-1}\right)^{n}$, and therefore every power of \mathbf{A}^{n} is nonsingular.

Gauss-Jordan Elimination

To find an inverse of a nonsingular square matrix, one generally uses the Gauss-Jordan Elimination method.

Justification

For square matrices \mathbf{A}, calculating the right inverse turns out to also be the left inverse, so we need only calculate: $\mathbf{A X}=\mathbf{I}$, where we are solving for \mathbf{X}.

If we write $\mathbf{X}=\left[\begin{array}{lll}\vec{x}_{1} & \ldots & \vec{x}_{n}\end{array}\right]$, then recall that $\mathbf{A X}=\left[\begin{array}{lll}\mathbf{A} \vec{x}_{1} & \ldots & \mathbf{A} \vec{x}_{n}\end{array}\right]$.

So, solving $\mathbf{A X}=\mathbf{I}$ amounts to solving the equations $\mathbf{A} \vec{x}_{1}=\vec{e}_{1}, \ldots, \mathbf{A} \vec{x}_{n}=\vec{e}_{n}$ or $\left[\mathbf{A} \mid \vec{e}_{1}\right], \ldots,\left[\mathbf{A} \mid \vec{e}_{n}\right]$, where the \vec{e}_{i} are the standard unit vectors.

However, since each of these equations has the same coefficient matrix \mathbf{A}, the n calculations will perform identical row operations.

This allows us to combine the calculations into a single calculation: $\left[\mathbf{A} \mid \vec{e}_{1} \ldots \vec{e}_{n}\right]=\left[\mathbf{A} \mid \mathbf{I}_{n}\right]$.

This allows us to make the same changes to the \vec{e}_{i}, but simultaneously.

So our previous method would have us reduce this to $[\mathbf{U} \mid \mathbf{C}]$, with the task to solve this using back substitution.

However, it is usually more convenient to continue using row operations until you have obtain $[\mathbf{I} \mid \mathbf{X}]$.

Accomplishing this may now require type 3 row operations (multiplying rows by nonzero constants).

So, convert $[\mathbf{A} \mid \mathbf{I}]=\left[\begin{array}{cccc|cccc}a_{11} & a_{12} & \ldots & a_{1 n} & 1 & 1 & 0 & \ldots \\ a_{21} & a_{22} & \ldots & a_{2 n} & \mid & 0 & 1 & \ldots \\ \vdots & \vdots & \ddots & \vdots & \mid & \vdots & \vdots & \ddots \\ \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n} & 0 & 0 & \ldots & 1\end{array}\right]$ into...

$$
\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & a_{11}^{\prime} & a_{12}^{\prime} & \ldots & a_{1 n}^{\prime} \\
0 & 1 & 0 & 0 & a_{21}^{\prime} & a_{22}^{\prime} & \ldots & a_{2 n}^{\prime} \\
0 & 0 & 1 & 0 & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1 & a_{n 1}^{\prime} & a_{n 2}^{\prime} & \ldots & a_{n n}^{\prime}
\end{array}\right]=\left[\mathbf{I} \mid \mathbf{A}^{-1}\right] \text {, using elementary row operations. }
$$

Example: Use Gauss-Jordan elimination to find the inverse of $\mathbf{A}=\left[\begin{array}{ccc}1 & -2 & 2 \\ 3 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$

$\xrightarrow{R 3+(-R 1)}\left[\begin{array}{ccc|ccc}1 & -2 & 2 & \mid & 1 & 0 \\ 0 \\ 0 & 6 & -5 & \mid & -3 & 1 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1\end{array}\right] \xrightarrow{R 2 \leftrightarrow R 3}\left[\begin{array}{ccc|ccc}1 & -2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & \mid & -1 & 0 \\ 1 \\ 0 & 6 & -5 & -3 & 1 & 0\end{array}\right]$
$\xrightarrow{R 3+(-6 R 1)}\left[\begin{array}{ccc|ccc}1 & -2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & \mid & -1 & 0 \\ 1 \\ 0 & 0 & -5 & 3 & 1 & -6\end{array}\right]=:[\mathbf{U} \mid \widetilde{e}]$.

At this point, we have reduced the original system $\mathbf{A X}=\mathbf{I}$ to 3 equations $\mathbf{U} \vec{x}=\widetilde{e}_{i}$
But let's continue to $\left[\mathbf{I} \mid \mathbf{A}^{-1}\right]$.
$\xrightarrow{R 1+2 R 2}\left[\begin{array}{ccc|ccc}1 & 0 & 2 & \mid & -1 & 0 \\ 2 \\ 0 & 1 & 0 & \mid & -1 & 0 \\ 1 \\ 0 & 0 & -5 & 3 & 1 & -6\end{array}\right] \stackrel{ }{-\frac{1}{5} R 3}\left[\begin{array}{ccc|ccc}1 & 0 & 2 & \mid & -1 & 0 \\ 0 \\ 0 & 1 & 0 & \mid & -1 & 0 \\ 0 & 0 & 1 & \mid & -\frac{3}{5} & -\frac{1}{5} \\ \frac{6}{5}\end{array}\right]$
(notice how I am allowing myself to add constant multiples of lower rows to upper rows!)
(also notice how I avoided fractions until the last possible moment)
$\mathbf{A}^{-1}=\frac{1}{5}\left[\begin{array}{ccc}1 & 2 & -2 \\ -5 & 0 & 5 \\ -3 & -1 & 6\end{array}\right]$.

Always Be Adding
AVOID FRACTIONS!!!

Elementary Matrices: Type 3

Elementary matrix which performs scalar multiplication of $\mathrm{i}^{\text {th }}$ row by c.
$\mathbf{E}=\left[\begin{array}{lllll}\vec{e}_{1} & \ldots & c \vec{e}_{i} & \ldots & \vec{e}_{n}\end{array}\right]$. With $\mathbf{E}^{-1}=\left[\begin{array}{llllll}\vec{e}_{1} & \ldots & \frac{1}{c} \vec{e}_{i} \ldots & \vec{e}_{n}\end{array}\right]$
So, if we want to multiply the second column of a 3×3 matrix by 5 , we can do so with: $\mathbf{E}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1\end{array}\right]$.
Verify that $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{5} & 0 \\ 0 & 0 & 1\end{array}\right]$ is its inverse.

Lemma: Every elementary matrix is nonsingular, and its inverse is also an elementary matrix of the same type.

We now have sufficient results to prove the previously mentioned theorem:
Theorem: $\mathbf{A}^{n \times n}$ has an inverse iff \mathbf{A} is nonsingular.

Proof: Gauss-Jordan method reduces nonsingular $\mathbf{A}^{n \times n}$ to \mathbf{I}_{n} through row operations.

Let $\mathbf{E}_{1}, \ldots, \mathbf{E}_{N}$ be the corresponding elementary matrices. So: $\mathbf{E}_{N} \mathbf{E}_{N-1} \ldots \mathbf{E}_{1} \mathbf{A}=\mathbf{I}_{n}$.

Claim: $\mathbf{X}=\mathbf{E}_{N} \mathbf{E}_{N-1} \ldots \mathbf{E}_{1}$ is the inverse of \mathbf{A}.

We already have that it is the left inverse, furthermore each elementary matrix has an inverse.

Therefore, \mathbf{X} is itself invertible: $\mathbf{X}^{-1}=\left(\mathbf{E}_{N} \mathbf{E}_{N-1} \ldots \mathbf{E}_{1}\right)^{-1}=\mathbf{E}_{1}^{-1} \mathbf{E}_{2}^{-1} \ldots \mathbf{E}_{N}^{-1}$.

So, multiplying $\mathbf{X A}=\mathbf{I}$ on the left by \mathbf{X}^{-1} leads to $\mathbf{A}=\mathbf{X}^{-1}$.

And by previous lemma, we also have $\mathbf{X}=\mathbf{A}^{-1}$.

Furthermore, if we substitute $\mathbf{A}=\mathbf{X}^{-1}$ into ($*$), we get the following proposition:
Proposition: Every nonsingular matrix can be written as the product of elementary matrices.

Proposition: If \mathbf{L} is a lower triangular matrix with all nonzero entries on the main diagonal, then \mathbf{L} is nonsingular and its inverse \mathbf{L}^{-1} is also lower triangular. In particular, if \mathbf{L} is lower unitriangular, so is \mathbf{L}^{-1}. A similar result holds for upper triangular matrices.

Proof in textbook.

Example: Find the inverse of $\mathbf{A}=\left[\begin{array}{ccc}2 & 1 & 2 \\ 4 & 2 & 3 \\ 0 & -1 & 1\end{array}\right]$, if possible, by applying the Gauss-Jordan Method.

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccccccc}
2 & 1 & 2 & \mid & 1 & 0 & 0 \\
4 & 2 & 3 & \mid & 0 & 1 & 0 \\
0 & -1 & 1 & \mid & 0 & 0 & 1
\end{array}\right] \stackrel{R_{2}+\left(-2 R_{1}\right)}{\Rightarrow}\left[\begin{array}{ccccccc}
2 & 1 & 2 & \mid & 1 & 0 & 0 \\
0 & 0 & -1 & \mid & -2 & 1 & 0 \\
0 & -1 & 1 & \mid & 0 & 0 & 1
\end{array}\right]} \\
\stackrel{R_{2} \leftrightarrow R_{3}}{\Rightarrow}\left[\begin{array}{ccccccc}
2 & 1 & 2 & \mid & 1 & 0 & 0 \\
0 & -1 & 1 & \mid & 0 & 0 & 1 \\
0 & 0 & -1 & \mid & -2 & 1 & 0
\end{array}\right] \\
\stackrel{R_{1}+R_{2}}{\Rightarrow}\left[\begin{array}{ccccccc}
2 & 0 & 3 & \mid & 1 & 0 & 1 \\
0 & -1 & 1 & \mid & 0 & 0 & 1 \\
0 & 0 & -1 & \mid & -2 & 1 & 0
\end{array}\right] \stackrel{R_{1}+3 R_{3}}{\Rightarrow}\left[\begin{array}{ccccccc}
2 & 0 & 0 & \mid & -5 & 3 & 1 \\
0 & -1 & 1 & \mid & 0 & 0 & 1 \\
0 & 0 & -1 & \mid & -2 & 1 & 0
\end{array}\right] \stackrel{R_{2}+R_{3}}{\Rightarrow}\left[\begin{array}{ccc}
2 & 0 & 0
\end{array} \left\lvert\, \begin{array}{cccc}
0 & -5 & 3 & 1 \\
-1 & 0 & \mid & -2 \\
\hline & 1 & 1 \\
0 & -1 & -2 & 1
\end{array}\right.\right]
\end{array}\right]\right]
$$

Therefore, $\mathbf{A}^{-1}=\left[\begin{array}{ccc}-\frac{5}{2} & \frac{3}{2} & \frac{1}{2} \\ 2 & -1 & -1 \\ 2 & -1 & 0\end{array}\right]$.

Solving Linear Systems with the Inverse

Theorem: If \mathbf{A} is nonsingular, then $\vec{x}=\mathbf{A}^{-1} \vec{b}$ is the unique solution to the linear system $\mathbf{A} \vec{x}=\vec{b}$.

Proof: We merely multiply the system (on the left) by \mathbf{A}^{-1}, which yields $\vec{x}=\mathbf{A}^{-1} \mathbf{A} \vec{x}=\mathbf{A}^{-1} \vec{b}$.

Moreover, $\mathbf{A} \vec{x}=\mathbf{A A}^{-1} \vec{b}=\vec{b}$, proving that $x=\mathbf{A}^{-1} \vec{b}$ is indeed the solution.

Example: Solve the following system of linear equations by computing the inverse of its coefficient matrix.
$3 u-v=2$ and $u+5 v=12$.
$\mathbf{A}=\left[\begin{array}{cc}3 & -1 \\ 1 & 5\end{array}\right]$
$\Rightarrow \quad \mathbf{A}^{-1}=\frac{1}{\operatorname{det} \mathbf{A}}\left[\begin{array}{cc}5 & 1 \\ -1 & 3\end{array}\right]=\frac{1}{16}\left[\begin{array}{cc}5 & 1 \\ -1 & 3\end{array}\right]$
$\Rightarrow \mathbf{A} \vec{x}=\vec{b}$, where $\vec{x}:=(u, v)$ and $\vec{b}:=(2,12)$.
$\Rightarrow \vec{x}=\mathbf{A}^{-1} \vec{b}=\frac{1}{16}\left[\begin{array}{cc}5 & 1 \\ -1 & 3\end{array}\right]\left[\begin{array}{c}2 \\ 12\end{array}\right]=\left[\begin{array}{c}\frac{11}{8} \\ \frac{17}{8}\end{array}\right]$.

So, $u=\frac{11}{8}$ and $v=\frac{17}{8}$ is the unique solution.

The LDV Factorization

Theorem: \mathbf{A} is regular iff it admits a factorization $\mathbf{A}=\mathbf{L D V}$, where \mathbf{L} is lower unitriangular, \mathbf{D} is diagonal with nonzero diagonal entries, and \mathbf{V} is an upper unitriangular.

In particular, once one has calculated $\mathbf{A}=\mathbf{L} \mathbf{U}$, then \mathbf{D} is a diagonal matrix consisting of the same diagonal entries as \mathbf{U}, that is, the pivots. \mathbf{V} is then obtained from \mathbf{U} by dividing each row by its pivot.

Proposition: If $\mathbf{A}=\mathbf{L} \mathbf{U}$ is regular, then the factors \mathbf{L} and \mathbf{U} are uniquely determined.
The same holds for the $\mathbf{A}=\mathbf{L D V}$ factorization.

Proof in textbook.

Theorem: \mathbf{A} is nonsingular iff there is a permutation matrix \mathbf{P} such that $\mathbf{P A}=\mathbf{L D V}$ (permuted LDV factorization),
where \mathbf{L} is a lower unitriangular matrix, \mathbf{D} is a diagonal matrix with nonzero diagonal entries, and \mathbf{V} is an upper unitriangular matrix.

Proof: Follows directly from " \mathbf{A} is nonsingular iff $\mathbf{A}=\mathbf{L} \mathbf{U}$ " and the above proposition.

Example: Produce the LDV or a permuted $\mathbf{L D V}$ factorization of $\mathbf{A}=\left[\begin{array}{ccc}2 & -2 & 0 \\ 4 & -3 & -6 \\ 0 & 2 & -5\end{array}\right]$

Recall from a previous example (see above) that we had generated the $\mathbf{L U}$ factorization for \mathbf{A} as:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & -2 & 0 \\
0 & 1 & -6 \\
0 & 0 & 7
\end{array}\right]=\mathbf{L} \mathbf{U}
$$

Generating the diagonal \mathbf{D} from U's pivots: $\mathbf{D}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7\end{array}\right]$.

Then dividing each of \mathbf{U} 's rows by their pivots, we get: $\mathbf{V}=\left[\begin{array}{c}\frac{1}{2} \cdot \vec{r}_{1} \\ 1 \cdot \vec{r}_{2} \\ \frac{1}{7} \cdot \vec{r}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 1\end{array}\right]$.

Therefore: $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 1\end{array}\right]=\mathbf{L D V}$.

