Announcements

1.4 - 1.5 Pivoting and Permutations; Matrix Inverses

How do you solve $\mathbf{A}\vec{x} = \vec{b}$ if **A** isn't regular?

Observe this is just the system of equations: $x_2 + 2x_3 = b_1$, $x_1 + 3x_2 + 4x_3 = b_2$, and $x_3 = b_3$.

Obviously, the order in which we listed these equations does not change the solution to the system.

So we are allowed to list them as: $x_1 + 3x_2 + 4x_3 = b_2$, $x_2 + 2x_3 = b_1$, and $x_3 = b_3$.

This gives us the augmented matrix: $\begin{bmatrix} \widetilde{\mathbf{A}} | \vec{\widetilde{b}} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 4 & | & b_2 \\ 0 & 1 & 2 & | & b_1 \\ 0 & 0 & 1 & | & b_3 \end{bmatrix}$,

where $\widetilde{\mathbf{A}}$ is now regular, and this system has the same solutions as the original \mathbf{A} .

This justifies the row operation #2 of interchanging two rows, or pivoting.

Definition: A square matrix is called *nonsingular* if it can be reduced to upper triangular form with all nonzero diagonal elements through row operations of types #1 and #2. (i.e., add scalar multiple of one row to a lower row, and/or pivots)

Theorem: $A\vec{x} = \vec{b}$ has unique solution for every choice of \vec{b} iff A is square & nonsingular.

Proof of \Leftarrow : Nonsingularity implies reduction to upper triangular \widetilde{A} , having same solution. Proof of \Rightarrow : Section 1.8. Nonsingular Matrices Requires row operation #2 Regular Matrices Reduced with just row operation #1

Observe that interchanging rows of a matrix can be accomplished by an elementary matrix, for example:

If $\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, this will interchange the first two rows of a 3 × 3 matrix.

Γ	0	1	0	a	а	а		Γ	b	b	b	
	1	0	0	b	b	b	=		a	a	а	.
L	0	0	1	С	С	С			С	С	С	

Definition: A permutation matrix P is a matrix obtained from the identity matrix by any combination of row interchanges.

Lemma: **P** is a permutation matrix **iff** each row of **P** contains all 0 entries except for a single 1, and in addition, each column of **P** also contains all 0 entries except for a single 1.

Permuted LU Factorization

Note: For nonsingular matrices, to convert them to upper triangular form, we can choose to perform the necessary pivots first, and subsequently perform the required type 1 row operations. So, then **PA** is regular, and by previous theorem can be factored as PA = LU.

How to construct the permuted LU factorization:

Start out with A, and two identity matrices. One will become L, and the other P.

Then, Gaussian reduce A, recording each pivot on the L matrix, and any type 1 operation on the P matrix.

Example: Let $\mathbf{A} = \begin{bmatrix} 0 & 2 & -5 \\ 4 & -3 & -6 \\ 2 & -2 & 0 \end{bmatrix}$. Find permutation, lower triangular,

and upper triangular matrices P, L, U such that PA = LU.

So we start out with
$$\mathbf{L}_0 = \mathbf{P}_0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

And we notice right away that the first row of \mathbf{A} will not work, so we interchange it with the 3rd row:

$$\mathbf{A}_1 = \begin{bmatrix} 2 & -2 & 0 \\ 4 & -3 & -6 \\ 0 & 2 & -5 \end{bmatrix},$$

Recording this in **P** gives us $\mathbf{P}_1 = \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$.

Then we proceeding with a type 1 row operation, we have:

$$\mathbf{A}_{2} = \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -6 \\ 0 & 2 & -5 \end{bmatrix}.$$
 Recording this in **L**, gives us $\mathbf{L}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

Next, another type 1 operation: $\mathbf{A}_3 = \mathbf{U} = \begin{bmatrix} 2 & -2 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 7 \end{bmatrix}$, recording this in \mathbf{L} , gives us $\mathbf{L}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$.

		$\left[\begin{array}{rrrr} 0 & 2 & -5 \\ 4 & -3 & -6 \\ 2 & -2 & 0 \end{array}\right] =$		2 -2 0		
Therefore:	0 1 0	4 -3 -6 =	2 1 0	0 1 -6	OR	$\mathbf{P}_1\mathbf{A}=\mathbf{L}_2\mathbf{U}.$
	1 0 0	2 -2 0	0 2 1	0 0 7		

So, we have generalized LU factorization to matrices which require pivots:

Theorem: Given $A^{n \times n}$. The following conditions are equivalent:

- A is nonsingular.
- A has *n* nonzero pivots.
- A admits a permuted LU factorization: PA = LU.

Matrix Inverses (§1.5)

Recall from previous mathematics that if $a \neq 0$,

then there is a (unique) number $b = a^{-1} = \frac{1}{a}$ such that ab = ba = 1.

We call this number its inverse, and we say these nonzero numbers are invertible.

Does this exist for matrices? Kind of, but we must change the assumption a bit.

Instead of $A \neq 0$, we need something called the **determinant** of A to be nonzero.

Definition: We say $A^{n \times n}$ is **invertible** if there exists **B** such that AB = BA = I. If **B** exists, then **B** is **A**'s inverse, and is commonly denoted A^{-1} .

Because matrices do not commute, we must have both AB = I and BA = I.

In particular, **B** must be both a left- **and** a right-inverse.

But only square matrices can have both, so only square matrices can be invertible.

 2×2 Matrices:

Given: $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

A is invertible if ad - bc (its **determinant**) is nonzero.

Proof: Let
$$X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$$
 be it's inverse. So the right inverse condition is:

$$\mathbf{AX} = \begin{bmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Solving the system of four equations, we find: $x = \frac{d}{ad-bc}$, $y = -\frac{b}{ad-bc}$, $z = -\frac{c}{ad-bc}$, $w = \frac{a}{ad-bc}$,

provided
$$ad - bc \neq 0$$
.

In which case (in this 2 × 2 example) we have **inverse**: $\mathbf{A}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

(One-over-Determinant, Swap, then Signs)

Theorem: $A^{n \times n}$ has an inverse **iff** A is nonsingular. (proof provided later)

Lemma: The inverse of a square matrix, if it exists, is unique.

Proof: Suppose X satisfies XA = AX = I and Y satisfies YA = AY = I.

By associativity: $\mathbf{X} = \mathbf{XI} = \mathbf{X}(\mathbf{AY}) = (\mathbf{XA})\mathbf{Y} = \mathbf{IY} = \mathbf{Y}$.

Lemma: If **A** is an invertible matrix, then \mathbf{A}^{-1} is also invertible and $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$.

Proof: The matrix inverse equations $A^{-1}A = I = AA^{-1}$ are sufficient to prove that A is the inverse of A^{-1} .

Lemma: If **A** and **B** are invertible matrices of the same size, then their product, **AB**, is invertible, and $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$. Note that the order of the factors is reversed under inversion. **Proof:** Let $\mathbf{X} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.

Then, by associativity, $\mathbf{X}(\mathbf{AB}) = \mathbf{B}^{-1}\mathbf{A}^{-1}\mathbf{AB} = \mathbf{B}^{-1}\mathbf{IB} = \mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$,

 $(\mathbf{AB})\mathbf{X} = \mathbf{ABB}^{-1}\mathbf{A}^{-1} = \mathbf{AIA}^{-1} = \mathbf{AA}^{-1} = \mathbf{I}.$

Thus **X** is both a left and right inverse for the product matrix **AB**.

Warning: in general, $(\mathbf{A} + \mathbf{B})^{-1} \neq \mathbf{A}^{-1} + \mathbf{B}^{-1}$.

Example: Show that if A is a nonsingular matrix, so is every power A^n .

Recall that nonsingular matrices are square matrices. Also, A is nonsingular iff it has an inverse A^{-1} .

Observe that $\mathbf{A}^{n}(\mathbf{A}^{-1})^{n} = (\mathbf{A}\mathbf{A}...\mathbf{A}\mathbf{A})(\mathbf{A}^{-1}\mathbf{A}^{-1}...\mathbf{A}^{-1}\mathbf{A}^{-1}) = (\mathbf{A}\mathbf{A}...\mathbf{A})(\mathbf{A}\mathbf{A}^{-1})(\mathbf{A}^{-1}\mathbf{A}^{-1}...\mathbf{A}^{-1})$

$$= (\mathbf{A}\mathbf{A}...\mathbf{A})\mathbf{I}(\mathbf{A}^{-1}\mathbf{A}^{-1}...\mathbf{A}^{-1}) = (\mathbf{A}\mathbf{A}...\mathbf{A})(\mathbf{A}^{-1}\mathbf{A}^{-1}...\mathbf{A}^{-1}) = ... = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}.$$

Therefore, \mathbf{A}^n has an inverse of $(\mathbf{A}^{-1})^n$, and therefore every power of \mathbf{A}^n is nonsingular.

Gauss-Jordan Elimination

To find an inverse of a nonsingular square matrix, one generally uses the Gauss-Jordan Elimination method.

Justification

For square matrices A, calculating the right inverse turns out to also be the left inverse, so we need only calculate: AX = I, where we are solving for X.

If we write $\mathbf{X} = \begin{bmatrix} \vec{x}_1 & \dots & \vec{x}_n \end{bmatrix}$, then recall that $\mathbf{A}\mathbf{X} = \begin{bmatrix} \mathbf{A}\vec{x}_1 & \dots & \mathbf{A}\vec{x}_n \end{bmatrix}$.

So, solving $\mathbf{A}\mathbf{X} = \mathbf{I}$ amounts to solving the equations $\mathbf{A}\vec{x}_1 = \vec{e}_1, \dots, \mathbf{A}\vec{x}_n = \vec{e}_n$ or $[\mathbf{A}|\vec{e}_1], \dots, [\mathbf{A}|\vec{e}_n]$, where the \vec{e}_i are the standard unit vectors.

However, since each of these equations has the same coefficient matrix **A**, the *n* calculations will perform identical row operations.

This allows us to combine the calculations into a single calculation: $\begin{bmatrix} \mathbf{A} | \vec{e}_1 & \dots & \vec{e}_n \end{bmatrix} = \begin{bmatrix} \mathbf{A} | \mathbf{I}_n \end{bmatrix}$.

This allows us to make the same changes to the \vec{e}_i , but simultaneously.

So our previous method would have us reduce this to $[\mathbf{U}|\mathbf{C}]$, with the task to solve this using back substitution.

However, it is usually more convenient to continue using row operations until you have obtain [I|X].

Accomplishing this may now require type 3 row operations (multiplying rows by nonzero constants).

So, convert
$$\begin{bmatrix} \mathbf{A} \mid \mathbf{I} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \mid 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} \mid 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \mid \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \mid 0 & 0 & \dots & 1 \end{bmatrix}$$
 into...
$$\begin{bmatrix} 1 & 0 & 0 & 0 \mid a'_{11} & a'_{12} & \dots & a'_{1n} \\ 0 & 1 & 0 & 0 \mid a'_{21} & a'_{22} & \dots & a'_{2n} \\ 0 & 0 & 1 & 0 \mid & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \mid a'_{n1} & a'_{n2} & \dots & a'_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{I} \mid \mathbf{A}^{-1} \end{bmatrix}$$
, using elementary row operations.

Example: Use Gauss-Jordan elimination to find the inverse of $\mathbf{A} = \begin{bmatrix} 1 & -2 & 2 \\ 3 & 0 & 1 \\ 1 & -1 & 2 \end{bmatrix}$.

$$\begin{bmatrix} 1 & -2 & 2 & | & 1 & 0 & 0 \\ 3 & 0 & 1 & | & 0 & 1 & 0 \\ 1 & -1 & 2 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2+(-3R1)} \begin{bmatrix} 1 & -2 & 2 & | & 1 & 0 & 0 \\ 0 & 6 & -5 & | & -3 & 1 & 0 \\ 1 & -1 & 2 & | & 0 & 0 & 1 \end{bmatrix}$$

At this point, we have reduced the original system $\mathbf{A}\mathbf{X} = \mathbf{I}$ to 3 equations $\mathbf{U}\vec{\mathbf{x}} = \tilde{e}_i$ But let's continue to $[\mathbf{I}|\mathbf{A}^{-1}]$.

(notice how I am allowing myself to add constant multiples of lower rows to upper rows!) (also notice how I avoided fractions until the last possible moment)

$$\mathbf{A}^{-1} = \frac{1}{5} \begin{bmatrix} 1 & 2 & -2 \\ -5 & 0 & 5 \\ -3 & -1 & 6 \end{bmatrix}.$$

Always Be Adding AVOID FRACTIONS!!!

Elementary Matrices: Type 3

Elementary matrix which performs scalar multiplication of i^{th} row by c.

 $\mathbf{E} = \begin{bmatrix} \vec{e}_1 & \dots & \vec{e}_i \\ \dots & \vec{e}_n \end{bmatrix}. \text{ With } \mathbf{E}^{-1} = \begin{bmatrix} \vec{e}_1 & \dots & \frac{1}{c} \vec{e}_i \\ \dots & \vec{e}_n \end{bmatrix}$

So, if we want to multiply the second column of a 3×3 matrix by 5, we can do so with: $\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

	1	0	0	7
Verify that	0	$\frac{1}{5}$	0	is its inverse.
	0	0	1	

Lemma: Every elementary matrix is nonsingular, and its inverse is also an elementary matrix of the same type.

We now have sufficient results to prove the previously mentioned theorem:

Theorem: $\mathbf{A}^{n \times n}$ has an inverse **iff** \mathbf{A} is nonsingular.

Proof: Gauss-Jordan method reduces nonsingular $A^{n \times n}$ to I_n through row operations.

Let $\mathbf{E}_1, \ldots, \mathbf{E}_N$ be the corresponding elementary matrices. So: $\mathbf{E}_N \mathbf{E}_{N-1} \ldots \mathbf{E}_1 \mathbf{A} = \mathbf{I}_n$.

Claim: $\mathbf{X} = \mathbf{E}_N \mathbf{E}_{N-1} \dots \mathbf{E}_1$ is the inverse of **A**.

We already have that it is the left inverse, furthermore each elementary matrix has an inverse.

Therefore, **X** is itself invertible: $\mathbf{X}^{-1} = (\mathbf{E}_N \mathbf{E}_{N-1} \dots \mathbf{E}_1)^{-1} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \dots \mathbf{E}_N^{-1}$. (*)

So, multiplying XA = I on the left by X^{-1} leads to $A = X^{-1}$.

And by previous lemma, we also have $\mathbf{X} = \mathbf{A}^{-1}$.

Furthermore, if we substitute $\mathbf{A} = \mathbf{X}^{-1}$ into (*), we get the following proposition: **Proposition**: Every nonsingular matrix can be written as the product of elementary matrices.

Proposition: If L is a lower triangular matrix with all nonzero entries on the main diagonal, then L is nonsingular and its inverse L^{-1} is also lower triangular. In particular, if L is lower unitriangular, so is L^{-1} . A similar result holds for upper triangular matrices.

Proof in textbook.

Example: Find the inverse of
$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}$$
, if possible, by applying the Gauss-Jordan Method.

$$\begin{bmatrix} 2 & 1 & 2 & | & 1 & 0 & 0 \\ 4 & 2 & 3 & | & 0 & 1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 + (-2R_1)} \begin{bmatrix} 2 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 0 & -1 & | & -2 & 1 & 0 \\ 0 & -1 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

Therefore,
$$\mathbf{A}^{-1} = \begin{bmatrix} -\frac{5}{2} & \frac{3}{2} & \frac{1}{2} \\ 2 & -1 & -1 \\ 2 & -1 & 0 \end{bmatrix}$$
.

Solving Linear Systems with the Inverse

Theorem: If A is nonsingular, then $\vec{x} = \mathbf{A}^{-1}\vec{b}$ is the unique solution to the linear system $\mathbf{A}\vec{x} = \vec{b}$.

Proof: We merely multiply the system (on the left) by \mathbf{A}^{-1} , which yields $\vec{x} = \mathbf{A}^{-1}\mathbf{A}\vec{x} = \mathbf{A}^{-1}\vec{b}$.

Moreover, $\mathbf{A}\vec{x} = \mathbf{A}\mathbf{A}^{-1}\vec{b} = \vec{b}$, proving that $x = \mathbf{A}^{-1}\vec{b}$ is indeed the solution.

Example: Solve the following system of linear equations by computing the inverse of its coefficient matrix. 3u - v = 2 and u + 5v = 12.

$$\mathbf{A} = \begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$$

$$\Rightarrow \quad \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} 5 & 1 \\ -1 & 3 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 5 & 1 \\ -1 & 3 \end{bmatrix}$$

$$\Rightarrow \mathbf{A} \vec{x} = \vec{b}, \text{ where } \vec{x} := (u, v) \text{ and } \vec{b} := (2, 12).$$

$$\Rightarrow \vec{x} = \mathbf{A}^{-1} \vec{b} = \frac{1}{16} \begin{bmatrix} 5 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 12 \end{bmatrix} = \begin{bmatrix} \frac{11}{8} \\ \frac{17}{8} \end{bmatrix}.$$
So, $u = \frac{11}{8}$ and $v = \frac{17}{8}$ is the unique solution.

The LDV Factorization

Theorem: A is regular iff it admits a factorization A = LDV, where L is lower unitriangular,

D is diagonal with nonzero diagonal entries, and **V** is an upper unitriangular.

In particular, once one has calculated $\mathbf{A} = \mathbf{L}\mathbf{U}$, then \mathbf{D} is a diagonal matrix consisting of the same diagonal entries as \mathbf{U} , that is, the pivots. \mathbf{V} is then obtained from \mathbf{U} by dividing each row by its pivot.

Proposition: If A = LU is regular, then the factors L and U are uniquely determined. The same holds for the A = LDV factorization.

Proof in textbook.

Theorem: A is nonsingular **iff** there is a permutation matrix P such that PA = LDV (permuted LDV factorization), where L is a lower unitriangular matrix, D is a diagonal matrix with nonzero diagonal entries, and V is an upper unitriangular matrix.

Proof: Follows directly from "A is nonsingular iff A = LU" and the above proposition.

Example: Produce the **LDV** or a permuted **LDV** factorization of $\mathbf{A} = \begin{bmatrix} 2 & -2 & 0 \\ 4 & -3 & -6 \\ 0 & 2 & -5 \end{bmatrix}$.

Recall from a previous example (see above) that we had generated the LU factorization for A as:

	1	0	0	2	-2	0	
A =	2	1	0	0	1	-6	= LU.
	0	2	1	0	0	7	

Generating the diagonal **D** from **U**'s pivots: $\mathbf{D} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

$$\left[\begin{array}{cccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{array}\right].$$

Then dividing each of U's rows by their pivots, we get: $\mathbf{V} = \begin{bmatrix} \frac{1}{2} \cdot \vec{r}_1 \\ 1 \cdot \vec{r}_2 \\ \frac{1}{7} \cdot \vec{r}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix}.$

Therefore:
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{LDV}.$$