Applied Linear Algebra
Instructor: Jodin Morey = moreyjc@umn.edu

Announcements
¢

1.4 - 1.5 Pivoting and Permutations; Matrix Inverses

How do you solve AY = b if Aisn’t regular?

0 1
Example: 1 3
00

Observe this is just the system of equations: x> + 2x3 = by, x1 + 3x2 +4x3 = by, and x3 = bs.

Obviously, the order in which we listed these equations does not change the solution to the system.

So we are allowed to list them as: x1 + 3x, + 4x3 = by, x2 +2x3 = by, and x3 = bs.

~=2
This gives us the augmented matrix: |:A|b :| =

(=

3
1
0
where A is now regular, and this system has the same solutions as the original A.

This justifies the row operation #2 of interchanging two rows, or pivoting.

Definition: A square matrix is called nonsingular if it can be reduced to upper triangular
form with all nonzero diagonal elements through row operations of types #1 and #2.

(i.e., add scalar multiple of one row to a lower row, and/or pivots)

Theorem: AY = b has unique solution for every choice of Biff A is square & nonsingular.

Proof of «<: Nonsingularity implies reduction to upper triangular X, having same solution.

Proof of =: Section 1.8.

Nonsingular
Matrices

Requires row operation #2

Regular
Matrices
Reduced with

just row
operation #1

Observe that interchanging rows of a matrix can be accomplished by an elementary matrix, for example:



IfP = , this will interchange the first two rows of a 3 x 3 matrix.
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010 a a a b b b
1 00 b b b = a a a
0 01 c ¢ ¢ c ¢ ¢

Definition: A permutation matrix P is a matrix obtained from the identity matrix by any combination of row interchanges.

Lemma: P is a permutation matrix iff each row of P contains all 0 entries except for a single 1, and

in addition, each column of P also contains all 0 entries except for a single 1.

Permuted LU Factorization

Note: For nonsingular matrices, to convert them to upper triangular form, we can choose to perform the necessary pivots first,
and subsequently perform the required type 1 row operations. So, then PA is regular, and by previous theorem can be factored as
PA = LU.

How to construct the permuted LU factorization:

Start out with A, and two identity matrices. One will become L, and the other P.

Then, Gaussian reduce A, recording each pivot on the L matrix, and any type 1 operation on the P matrix.

0 2 -5
Example: Let A = 4 -3 —6 |.Find permutation, lower triangular,
2 -2 0

and upper triangular matrices P, L, U such that PA = LU.

So we start out with Ly = Pg =

S O =
S = O
-_ o O

And we notice right away that the first row of A will not work, so we interchange it with the 3rd row:
2 -2 0
Ar=| 4 3 -6 |,
0 2 -5



Recording this in P gives us Py =

- o O
S = O
S O =

Then we proceeding with a type 1 row operation, we have:

2 -2 0 1 00
A>=| 0 1 -6 | RecordingthisinL,givesusL;=| 2 1 0
0 2 -5 00 1
2 -2 0 1 00
Next, another type 1 operation: A3 =U=| 0 1 -6 |, recordingthisinL, givesusLo=| 2 1 0
0 0 7 0 21
0 01 0 2 -5 1 00 2 -2 0
Therefore: 010 4 -3 -6 = 210 0 1 -6 OR PA =1,U.
1 00 2 -2 0 0 21 0o 0 7

So,we have generalized LU factorization to matrices which require pivots:
Theorem: Given A", The following conditions are equivalent:

¢ A is nonsingular.

¢ A has n nonzero pivots.

¢ A admits a permuted LU factorization: PA = LU.

Matrix Inverses (§1.5)

Recall from previous mathematics that if a # 0,

then there is a (unique) number » = ™' = 1 such that ab = ba = 1.

We call this number its inverse, and we say these nonzero numbers are invertible.
Does this exist for matrices? Kind of, but we must change the assumption a bit.

Instead of A # 0, we need something called the determinant of A to be nonzero.

Definition: We say A" is invertible if there exists B such that AB = BA = L.

If B exists, then B is A’s inverse, and is commonly denoted A™".

Because matrices do not commute, we must have both AB = I and BA = 1.



In particular, B must be both a left- and a right-inverse.

But only square matrices can have both, so only square matrices can be invertible.

2 x 2 Matrices:
. a b
Given: A = .

A is invertible if ad — bc (its determinant) is nonzero. ) -

Proof: Let X = |: Y :| be it’s inverse. So the right inverse condition is:

zw
ax + bz ay+ bw 10
AX = = .
cx+dz cy+dw 0 1
: : . _ d _ b _ c _ a
Solving the system of four equations, we find: x = —&—, y = ——2%—, z = ——&=, w = —L—,
provided ad — bc + 0.
. . . . -1 1 d -b
In which case (in this 2 x 2 example) we have inverse: A~ = ——— .
—-c a

(One-over-Determinant, Swap, then Signs)

Theorem: A" has an inverse iff A is nonsingular. (proof provided later)

Lemma: The inverse of a square matrix, if it exists, is unique.

Proof: Suppose X satisfies XA = AX = I and Y satisfies YA = AY = L

By associativity: X = XI = X(AY) = (XA)Y =1Y =Y. |
Lemma: If A is an invertible matrix, then A™! is also invertible and (A" )71 = A.
Proof: The matrix inverse equations A”'A = I = AA™! are sufficient to prove that A is the inverse of A™'. |

Lemma: If A and B are invertible matrices of the same size, then their product, AB, is invertible, and (AB)’1 =B'A.

Note that the order of the factors is reversed under inversion.



Proof: Let X = B'A™".
Then, by associativity, X(AB) = B'A7AB = B'IB=B'B =1,
(AB)X = ABB'A!' = AIA ' = AA' =L
Thus X is both a left and right inverse for the product matrix AB. [

0 Warning: in general, (A + B)™' = A~ + B

Example: Show that if A is a nonsingular matrix, so is every power A”".
Recall that nonsingular matrices are square matrices. Also, A is nonsingular iff it has an inverse A™'.
Observe that A"(A™)" = (AA...AA)(A'A . ATTA™) = (AA...A)AATH(ATTAL.. AT
= (AA.AIA AT AT = (AALAATAT A = = AA' =L

Therefore, A" has an inverse of (A™")", and therefore every power of A" is nonsingular.

Gauss-Jordan Elimination
To find an inverse of a nonsingular square matrix, one generally uses the Gauss-Jordan Elimination method.
Justification
For square matrices A, calculating the right inverse turns out to also be the left inverse,
so we need only calculate: AX = I, where we are solving for X.

If we write X = [¥1 ... ¥, ], then recall that AX = [ A¥; ... AY, ].

So, solving AX = I amounts to solving the equations AX; = €1, ..., AX, = €, or

|:A|? 1 :|, . |:A|?n :|, where the ¢; are the standard unit vectors.

However, since each of these equations has the same coefficient matrix A, the n calculations will

perform identical row operations.

This allows us to combine the calculations into a single calculation: |:A|? | ... @n :| = [A|L,].



This allows us to make the same changes to the ¢;, but simultaneously.

So our previous method would have us reduce this to [U|C], with the task to solve

this using back substitution.

However, it is usually more convenient to continue using row operations until you have obtain [I|X].

Accomplishing this may now require type 3 row operations (multiplying rows by nonzero constants).

air a2 ... Qaip | 1 0
| 0 1 .. ,
So, convert [A | 1] = far an “ : L into...
A A2 ... am | 0 0 ... 1
1 000 | ay ay, ... d,
0100 : by e @
| a‘22 “on = [I|A™"], using elementary row operations.
001 0| :
000 1| ah Ay ... Ay 1
1 -2 2
Example: Use Gauss-Jordan elimination to find the inverseof A = | 3 0 1
1 -1 2
1 221100 122 ] 1 00
R2+(-3R1)
3011010 - 0 6 5] -310
1 -1 21001 1 -1 2 | 0 01
122 ] 1 00 1 -2 2 ] 10
R3+(-R1) R2oR3
- 6 51310 - 01 0 | -10
1 0 | -10 0 6 -5 | -31
1 -2 2 |11 00
R3+(~6R1
T 01 0 10 1 | = (UL

00 -5 3 1 -6

At this point, we have reduced the original system AX = I to 3 equations UX = &;
But let’s continue to [TJA™'].



102 | -10 2 1
01 0 | -1 0 1 > 0
00 5] 3 1-6 0

R1+2R2
—

(notice how I am allowing myself to add constant multiples of lower rows to upper rows!)

(also notice how I avoided fractions until the last possible moment)

1 2 =2
Al=11 5 0 5
-3 -1 6

Always Be Adding Q

- m '
proTIp | AVOID FRACTIONS!! o

Elementary Matrices: Type 3

Elementary matrix which performs scalar multiplication of i row by c.

E = [el ce. CE ... ?n]. With E™!' = [?1 e L8 ?n]

So, if we want to multiply the second column of a 3 x 3 matrix by 5, we can do so with: E = 0
0
0 | isits inverse.

1
Verify that | 0
0

Lemma: Every elementary matrix is nonsingular, and its inverse is also an elementary matrix of the same type.

We now have sufficient results to prove the previously mentioned theorem:

Theorem: A" has an inverse iff A is nonsingular.

Proof: Gauss-Jordan method reduces nonsingular A" to I,, through row operations.
Let Ei, ..., Ey be the corresponding elementary matrices. So: EyEy_;1... E1A = 1,.
Claim: X = EyEn_1... E; is the inverse of A.

We already have that it is the left inverse, furthermore each elementary matrix has an inverse.



Therefore, X is itself invertible: X! = (EyEy_i...E|)™ = E{'E5' ... E7.

So, multiplying XA = I on the left by X! leads to A = X'

And by previous lemma, we also have X = A",

Furthermore, if we substitute A = X! into (*), we get the following proposition:

Proposition: Every nonsingular matrix can be written as the product of elementary matrices.

Proposition: If L is a lower triangular matrix with all nonzero entries on the main diagonal,

(*)

then L is nonsingular and its inverse L™ is also lower triangular. In particular, if L is lower unitriangular,

sois L', A similar result holds for upper triangular matrices.

Proof in textbook.

Example: Find the inverse of A =

—_— W N
S O =
S = O
- o O

[\
—_
—_ N

Ry—R3
=

(=)
(=]
|
—_

(=1)-Ry & (-1)-R;
=

4 2 3
2
Ro+(-2R1)
=
00
0 1
1 0

R1+3R3
=
=5 3 1
2 -1 -1
2 -1 0

0 0
0 -1

2 11 00
1] =210
1 ] 001
20 0 | =53
0-1 1100
00 -1 ] -21
100 |-
1R,
1 010 |
001 |

R>+R3
=
EN
2 2
-1 -1
-1 0

2 0
0 -1
0 0

, if possible, by applying the Gauss-Jordan Method.



Therefore, A™' = 2 -1 -1

Solving Linear Systems with the Inverse
Theorem: If A is nonsingular, then X = A" is the unique solution to the linear system AX = b.
Proof: We merely multiply the system (on the left) by A™', which yields ¥ = A'AY = A'D.
Moreover, AY = AA~'h = b, proving that x = A5 is indeed the solution. [ |

Example: Solve the following system of linear equations by computing the inverse of its coefficient matrix.

3u—v=2andu+5v = 12.

LA - 5 1 _al 3 1
detA |y o3 o _q 3

= AX = b, where X = (u,v) and b = (2,12).
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The LDV Factorization

Theorem: A is regular iff it admits a factorization A = LDV, where L is lower unitriangular,

D is diagonal with nonzero diagonal entries, and V is an upper unitriangular.

In particular, once one has calculated A = LU, then D is a diagonal matrix consisting of the same

diagonal entries as U, that is, the pivots. V is then obtained from U by dividing each row by its pivot.



Proposition: If A = LU is regular, then the factors L and U are uniquely determined.
The same holds for the A = LDV factorization.

Proof in textbook.

Theorem: A is nonsingular iff there is a permutation matrix P such that PA = LDV (permuted LDV factorization),

where L is a lower unitriangular matrix, D is a diagonal matrix with nonzero diagonal entries,

and V is an upper unitriangular matrix.

Proof: Follows directly from "A is nonsingular iff A = LU" and the above proposition.

2 -2 0
Example: Produce the LDV or a permuted LDV factorization of A = 4 -3 —6
0 2 -5

Recall from a previous example (see above) that we had generated the LU factorization for A as:

1 00 2 -2 0
A= 210 0 1 -6 = LU.
021 0 0 7

0
Generating the diagonal D from U’s pivots: D =
L7 1 -1 0
Then dividing each of U’s rows by their pivots, we get: V = 1.7, = 01 -6
% 73 0 0 1
-1 0

Therefore: A =

S NN =
N = O
- o O



