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Announcements


1.4 - 1.5 Pivoting and Permutations; Matrix Inverses

How do you solve Ax  b if A isn’t regular?

Example:

0 1 2 | b1

1 3 4 | b2

0 0 1 | b3

Observe this is just the system of equations: x2  2x3  b1, x1  3x2  4x3  b2, and x3  b3.

Obviously, the order in which we listed these equations does not change the solution to the system.

So we are allowed to list them as: x1  3x2  4x3  b2, x2  2x3  b1, and x3  b3.

This gives us the augmented matrix: A|

b 

1 3 4 | b2

0 1 2 | b1

0 0 1 | b3

,

where A is now regular, and this system has the same solutions as the original A.

This justifies the row operation #2 of interchanging two rows, or pivoting.

Definition: A square matrix is called nonsingular if it can be reduced to upper triangular

form with all nonzero diagonal elements through row operations of types #1 and #2.

(i.e., add scalar multiple of one row to a lower row, and/or pivots)

Theorem: Ax  b has unique solution for every choice of b iff A is square & nonsingular.

Proof of : Nonsingularity implies reduction to upper triangular A, having same solution.

Proof of : Section 1.8.

Observe that interchanging rows of a matrix can be accomplished by an elementary matrix, for example:



If P 

0 1 0

1 0 0

0 0 1

, this will interchange the first two rows of a 3  3 matrix.

0 1 0

1 0 0

0 0 1

a a a

b b b

c c c



b b b

a a a

c c c

.

Definition: A permutation matrix P is a matrix obtained from the identity matrix by any combination of row interchanges.

Lemma: P is a permutation matrix iff each row of P contains all 0 entries except for a single 1, and

in addition, each column of P also contains all 0 entries except for a single 1.

Permuted LU Factorization

Note: For nonsingular matrices, to convert them to upper triangular form, we can choose to perform the necessary pivots first,
and subsequently perform the required type 1 row operations. So, then PA is regular, and by previous theorem can be factored as
PA  LU.

How to construct the permuted LU factorization:

Start out with A, and two identity matrices. One will become L, and the other P.

Then, Gaussian reduce A, recording each pivot on the L matrix, and any type 1 operation on the P matrix.

Example: Let A 

0 2 5

4 3 6

2 2 0

. Find permutation, lower triangular,

and upper triangular matrices P,L,U such that PA  LU.

So we start out with L0  P0 

1 0 0

0 1 0

0 0 1

.

And we notice right away that the first row of A will not work, so we interchange it with the 3rd row:

A1 

2 2 0

4 3 6

0 2 5

,



Recording this in P gives us P1 

0 0 1

0 1 0

1 0 0

.

Then we proceeding with a type 1 row operation, we have:

A2 

2 2 0

0 1 6

0 2 5

. Recording this in L, gives us L1 

1 0 0

2 1 0

0 0 1

.

Next, another type 1 operation: A3  U 

2 2 0

0 1 6

0 0 7

, recording this in L, gives us L2 

1 0 0

2 1 0

0 2 1

.

Therefore:

0 0 1

0 1 0

1 0 0

0 2 5

4 3 6

2 2 0



1 0 0

2 1 0

0 2 1

2 2 0

0 1 6

0 0 7

OR P1A  L2U.

So,we have generalized LU factorization to matrices which require pivots:

Theorem: Given Ann. The following conditions are equivalent:

 A is nonsingular.

 A has n nonzero pivots.

 A admits a permuted LU factorization: PA  LU.

Matrix Inverses (§1.5)
Recall from previous mathematics that if a  0,

then there is a (unique) number b  a1  1
a such that ab  ba  1.

We call this number its inverse, and we say these nonzero numbers are invertible.

Does this exist for matrices? Kind of, but we must change the assumption a bit.

Instead of A  0, we need something called the determinant of A to be nonzero.

Definition: We say Ann is invertible if there exists B such that AB  BA  I.

If B exists, then B is A’s inverse, and is commonly denoted A1.

Because matrices do not commute, we must have both AB  I and BA  I.



In particular, B must be both a left- and a right-inverse.

But only square matrices can have both, so only square matrices can be invertible.

2  2 Matrices:

Given: A 
a b

c d
.

A is invertible if ad  bc (its determinant) is nonzero.

Proof: Let X 
x y

z w
be it’s inverse. So the right inverse condition is:

AX 
ax  bz ay  bw

cx  dz cy  dw


1 0

0 1
.

Solving the system of four equations, we find: x  d
adbc , y   b

adbc , z   c
adbc , w  a

adbc ,

provided ad  bc  0.

In which case (in this 2  2 example) we have inverse: A1  1
adbc

d b

c a
.

(One-over-Determinant, Swap, then Signs)

Theorem: Ann has an inverse iff A is nonsingular. (proof provided later)

Lemma: The inverse of a square matrix, if it exists, is unique.

Proof: Suppose X satisfies XA  AX  I and Y satisfies YA  AY  I.

By associativity: X  XI  XAY  XAY  IY  Y. 

Lemma: If A is an invertible matrix, then A1 is also invertible and A1
1  A.

Proof: The matrix inverse equations A1A  I  AA1 are sufficient to prove that A is the inverse of A1. 

Lemma: If A and B are invertible matrices of the same size, then their product, AB, is invertible, and AB1  B1A1.

Note that the order of the factors is reversed under inversion.



Proof: Let X  B1A1.

Then, by associativity, XAB  B1A1AB  B1IB  B1B  I,

ABX  ABB1A1  AIA1  AA1  I.

Thus X is both a left and right inverse for the product matrix AB. 

Warning: in general, A  B1  A1  B1.

Example: Show that if A is a nonsingular matrix, so is every power An.

Recall that nonsingular matrices are square matrices. Also, A is nonsingular iff it has an inverse A1.

Observe that AnA1
n  AAAAA1A1A1A1  AAAAA1A1A1A1

 AAAIA1A1A1  AAAA1A1A1  AA1  I.

Therefore, An has an inverse of A1
n, and therefore every power of An is nonsingular.

Gauss-Jordan Elimination

To find an inverse of a nonsingular square matrix, one generally uses the Gauss-Jordan Elimination method.

Justification

For square matrices A, calculating the right inverse turns out to also be the left inverse,

so we need only calculate: AX  I, where we are solving for X.

If we write X  x 1  x n , then recall that AX  Ax 1  Ax n .

So, solving AX  I amounts to solving the equations Ax 1  e 1,  , Ax n  e n or

A|e 1 ,  , A|e n , where the e i are the standard unit vectors.

However, since each of these equations has the same coefficient matrix A, the n calculations will

perform identical row operations.

This allows us to combine the calculations into a single calculation: A|e 1  e n  A|In .



This allows us to make the same changes to the e i, but simultaneously.

So our previous method would have us reduce this to U|C, with the task to solve

this using back substitution.

However, it is usually more convenient to continue using row operations until you have obtain I|X.

Accomplishing this may now require type 3 row operations (multiplying rows by nonzero constants).

So, convert A | I  

a11 a12  a1n | 1 0  0

a21 a22  a2n | 0 1  0

    |    

an1 an2  ann | 0 0  1

into

1 0 0 0 | a11
 a12

  a1n


0 1 0 0 | a21
 a22

  a2n


0 0 1 0 |    

0 0 0 1 | an1
 an2

  ann


  I | A1, using elementary row operations.

Example: Use Gauss-Jordan elimination to find the inverse of A 

1 2 2

3 0 1

1 1 2

.

1 2 2 | 1 0 0

3 0 1 | 0 1 0

1 1 2 | 0 0 1

R23R1


1 2 2 | 1 0 0

0 6 5 | 3 1 0

1 1 2 | 0 0 1

R3R1


1 2 2 | 1 0 0

0 6 5 | 3 1 0

0 1 0 | 1 0 1

R2R3


1 2 2 | 1 0 0

0 1 0 | 1 0 1

0 6 5 | 3 1 0

R36R1


1 2 2 | 1 0 0

0 1 0 | 1 0 1

0 0 5 | 3 1 6

: U|e .

At this point, we have reduced the original system AX  I to 3 equations Ux  e i

But let’s continue to I|A1 .



R12R2


1 0 2 | 1 0 2

0 1 0 | 1 0 1

0 0 5 | 3 1 6

 1
5
R3


1 0 2 | 1 0 2

0 1 0 | 1 0 1

0 0 1 |  3
5  1

5
6
5

(notice how I am allowing myself to add constant multiples of lower rows to upper rows!)

(also notice how I avoided fractions until the last possible moment)

A1  1
5

1 2 2

5 0 5

3 1 6

.

Always Be Adding

AVOID FRACTIONS!!!

Elementary Matrices: Type 3
Elementary matrix which performs scalar multiplication of i th row by c.

E  e 1  ce i  e n . With E1  e 1  1
c e i  e n

So, if we want to multiply the second column of a 3  3 matrix by 5, we can do so with: E 

1 0 0

0 5 0

0 0 1

.

Verify that

1 0 0

0 1
5 0

0 0 1

is its inverse.

Lemma: Every elementary matrix is nonsingular, and its inverse is also an elementary matrix of the same type.

We now have sufficient results to prove the previously mentioned theorem:

Theorem: Ann has an inverse iff A is nonsingular.

Proof: Gauss-Jordan method reduces nonsingular Ann to In through row operations.

Let E1, ,EN be the corresponding elementary matrices. So: ENEN1E1A  In.

Claim: X  ENEN1E1 is the inverse of A.

We already have that it is the left inverse, furthermore each elementary matrix has an inverse.



Therefore, X is itself invertible: X1  ENEN1E1
1  E1

1E2
1EN

1. 

So, multiplying XA  I on the left by X1 leads to A  X1.

And by previous lemma, we also have X  A1. 

Furthermore, if we substitute A  X1 into , we get the following proposition:

Proposition: Every nonsingular matrix can be written as the product of elementary matrices.

Proposition: If L is a lower triangular matrix with all nonzero entries on the main diagonal,

then L is nonsingular and its inverse L1 is also lower triangular. In particular, if L is lower unitriangular,

so is L1. A similar result holds for upper triangular matrices.

Proof in textbook.

Example: Find the inverse of A 

2 1 2

4 2 3

0 1 1

, if possible, by applying the Gauss-Jordan Method.

2 1 2 | 1 0 0

4 2 3 | 0 1 0

0 1 1 | 0 0 1

R22R1 


2 1 2 | 1 0 0

0 0 1 | 2 1 0

0 1 1 | 0 0 1

R2R3


2 1 2 | 1 0 0

0 1 1 | 0 0 1

0 0 1 | 2 1 0

R1R2


2 0 3 | 1 0 1

0 1 1 | 0 0 1

0 0 1 | 2 1 0

R13R3


2 0 0 | 5 3 1

0 1 1 | 0 0 1

0 0 1 | 2 1 0

R2R3


2 0 0 | 5 3 1

0 1 0 | 2 1 1

0 0 1 | 2 1 0

1R2 & 1R3


2 0 0 | 5 3 1

0 1 0 | 2 1 1

0 0 1 | 2 1 0

1
2
R1



1 0 0 |  5
2

3
2

1
2

0 1 0 | 2 1 1

0 0 1 | 2 1 0

.



Therefore, A1 

 5
2

3
2

1
2

2 1 1

2 1 0

.

Solving Linear Systems with the Inverse

Theorem: If A is nonsingular, then x  A1b is the unique solution to the linear system Ax  b .

Proof: We merely multiply the system (on the left) by A1, which yields x  A1Ax  A1b .

Moreover, Ax  AA1b  b , proving that x  A1b is indeed the solution. 

Example: Solve the following system of linear equations by computing the inverse of its coefficient matrix.

3u  v  2 and u  5v  12.

A 
3 1

1 5

 A1  1
detA

5 1

1 3
 1

16

5 1

1 3

 Ax  b , where x : u,v and b : 2,12.

 x  A1b  1
16

5 1

1 3

2

12


11
8

17
8

.

So, u  11
8 and v  17

8 is the unique solution. 

The LDV Factorization

Theorem: A is regular iff it admits a factorization A  LDV, where L is lower unitriangular,

D is diagonal with nonzero diagonal entries, and V is an upper unitriangular.

In particular, once one has calculated A  LU, then D is a diagonal matrix consisting of the same

diagonal entries as U, that is, the pivots. V is then obtained from U by dividing each row by its pivot.



Proposition: If A  LU is regular, then the factors L and U are uniquely determined.

The same holds for the A  LDV factorization.

Proof in textbook.

Theorem: A is nonsingular iff there is a permutation matrix P such that PA  LDV (permuted LDV factorization),

where L is a lower unitriangular matrix, D is a diagonal matrix with nonzero diagonal entries,

and V is an upper unitriangular matrix.

Proof: Follows directly from "A is nonsingular iff A  LU" and the above proposition.

Example: Produce the LDV or a permuted LDV factorization of A 

2 2 0

4 3 6

0 2 5

.

Recall from a previous example (see above) that we had generated the LU factorization for A as:

A 

1 0 0

2 1 0

0 2 1

2 2 0

0 1 6

0 0 7

 LU.

Generating the diagonal D from U’s pivots: D 

2 0 0

0 1 0

0 0 7

.

Then dividing each of U’s rows by their pivots, we get: V 

1
2  r 1

1  r 2

1
7  r 3



1 1 0

0 1 6

0 0 1

.

Therefore: A 

1 0 0

2 1 0

0 2 1

2 0 0

0 1 0

0 0 7

1 1 0

0 1 6

0 0 1

 LDV.


