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Announcements


1.4 - 1.5 Pivoting and Permutations; Matrix Inverses

How do you solve Ax  b if A isn’t regular?

Example:

0 1 2 | b1

1 3 4 | b2

0 0 1 | b3

Observe this is just the system of equations: x2  2x3  b1, x1  3x2  4x3  b2, and x3  b3.

Obviously, the order in which we listed these equations does not change the solution to the system.

So we are allowed to list them as: x1  3x2  4x3  b2, x2  2x3  b1, and x3  b3.

This gives us the augmented matrix: A|

b 

1 3 4 | b2

0 1 2 | b1

0 0 1 | b3

,

where A is now regular, and this system has the same solutions as the original A.

This justifies the row operation #2 of interchanging two rows, or pivoting.

Definition: A square matrix is called nonsingular if it can be reduced to upper triangular

form with all nonzero diagonal elements through row operations of types #1 and #2.

(i.e., add scalar multiple of one row to a lower row, and/or pivots)

Theorem: Ax  b has unique solution for every choice of b iff A is square & nonsingular.

Proof of : Nonsingularity implies reduction to upper triangular A, having same solution.

Proof of : Section 1.8.

Observe that interchanging rows of a matrix can be accomplished by an elementary matrix, for example:



If P 

0 1 0

1 0 0

0 0 1

, this will interchange the first two rows of a 3  3 matrix.

0 1 0

1 0 0

0 0 1

a a a

b b b

c c c



b b b

a a a

c c c

.

Definition: A permutation matrix P is a matrix obtained from the identity matrix by any combination of row interchanges.

Lemma: P is a permutation matrix iff each row of P contains all 0 entries except for a single 1, and

in addition, each column of P also contains all 0 entries except for a single 1.

Permuted LU Factorization

Note: For nonsingular matrices, to convert them to upper triangular form, we can choose to perform the necessary pivots first,
and subsequently perform the required type 1 row operations. So, then PA is regular, and by previous theorem can be factored as
PA  LU.

How to construct the permuted LU factorization:

Start out with A, and two identity matrices. One will become L, and the other P.

Then, Gaussian reduce A, recording each pivot on the L matrix, and any type 1 operation on the P matrix.

Example: Let A 

0 2 5

4 3 6

2 2 0

. Find permutation, lower triangular,

and upper triangular matrices P,L,U such that PA  LU.

So we start out with L0  P0 

1 0 0

0 1 0

0 0 1

.

And we notice right away that the first row of A will not work, so we interchange it with the 3rd row:

A1 

2 2 0

4 3 6

0 2 5

,



Recording this in P gives us P1 

0 0 1

0 1 0

1 0 0

.

Then we proceeding with a type 1 row operation, we have:

A2 

2 2 0

0 1 6

0 2 5

. Recording this in L, gives us L1 

1 0 0

2 1 0

0 0 1

.

Next, another type 1 operation: A3  U 

2 2 0

0 1 6

0 0 7

, recording this in L, gives us L2 

1 0 0

2 1 0

0 2 1

.

Therefore:

0 0 1

0 1 0

1 0 0

0 2 5

4 3 6

2 2 0



1 0 0

2 1 0

0 2 1

2 2 0

0 1 6

0 0 7

OR P1A  L2U.

So,we have generalized LU factorization to matrices which require pivots:

Theorem: Given Ann. The following conditions are equivalent:

 A is nonsingular.

 A has n nonzero pivots.

 A admits a permuted LU factorization: PA  LU.

Matrix Inverses (§1.5)
Recall from previous mathematics that if a  0,

then there is a (unique) number b  a1  1
a such that ab  ba  1.

We call this number its inverse, and we say these nonzero numbers are invertible.

Does this exist for matrices? Kind of, but we must change the assumption a bit.

Instead of A  0, we need something called the determinant of A to be nonzero.

Definition: We say Ann is invertible if there exists B such that AB  BA  I.

If B exists, then B is A’s inverse, and is commonly denoted A1.

Because matrices do not commute, we must have both AB  I and BA  I.



In particular, B must be both a left- and a right-inverse.

But only square matrices can have both, so only square matrices can be invertible.

2  2 Matrices:

Given: A 
a b

c d
.

A is invertible if ad  bc (its determinant) is nonzero.

Proof: Let X 
x y

z w
be it’s inverse. So the right inverse condition is:

AX 
ax  bz ay  bw

cx  dz cy  dw


1 0

0 1
.

Solving the system of four equations, we find: x  d
adbc , y   b

adbc , z   c
adbc , w  a

adbc ,

provided ad  bc  0.

In which case (in this 2  2 example) we have inverse: A1  1
adbc

d b

c a
.

(One-over-Determinant, Swap, then Signs)

Theorem: Ann has an inverse iff A is nonsingular. (proof provided later)

Lemma: The inverse of a square matrix, if it exists, is unique.

Proof: Suppose X satisfies XA  AX  I and Y satisfies YA  AY  I.

By associativity: X  XI  XAY  XAY  IY  Y. 

Lemma: If A is an invertible matrix, then A1 is also invertible and A1
1  A.

Proof: The matrix inverse equations A1A  I  AA1 are sufficient to prove that A is the inverse of A1. 

Lemma: If A and B are invertible matrices of the same size, then their product, AB, is invertible, and AB1  B1A1.

Note that the order of the factors is reversed under inversion.



Proof: Let X  B1A1.

Then, by associativity, XAB  B1A1AB  B1IB  B1B  I,

ABX  ABB1A1  AIA1  AA1  I.

Thus X is both a left and right inverse for the product matrix AB. 

Warning: in general, A  B1  A1  B1.

Example: Show that if A is a nonsingular matrix, so is every power An.

Recall that nonsingular matrices are square matrices. Also, A is nonsingular iff it has an inverse A1.

Observe that AnA1
n  AAAAA1A1A1A1  AAAAA1A1A1A1

 AAAIA1A1A1  AAAA1A1A1  AA1  I.

Therefore, An has an inverse of A1
n, and therefore every power of An is nonsingular.

Gauss-Jordan Elimination

To find an inverse of a nonsingular square matrix, one generally uses the Gauss-Jordan Elimination method.

Justification

For square matrices A, calculating the right inverse turns out to also be the left inverse,

so we need only calculate: AX  I, where we are solving for X.

If we write X  x 1  x n , then recall that AX  Ax 1  Ax n .

So, solving AX  I amounts to solving the equations Ax 1  e 1,  , Ax n  e n or

A|e 1 ,  , A|e n , where the e i are the standard unit vectors.

However, since each of these equations has the same coefficient matrix A, the n calculations will

perform identical row operations.

This allows us to combine the calculations into a single calculation: A|e 1  e n  A|In .



This allows us to make the same changes to the e i, but simultaneously.

So our previous method would have us reduce this to U|C, with the task to solve

this using back substitution.

However, it is usually more convenient to continue using row operations until you have obtain I|X.

Accomplishing this may now require type 3 row operations (multiplying rows by nonzero constants).

So, convert A | I  

a11 a12  a1n | 1 0  0

a21 a22  a2n | 0 1  0

    |    

an1 an2  ann | 0 0  1

into

1 0 0 0 | a11
 a12

  a1n


0 1 0 0 | a21
 a22

  a2n


0 0 1 0 |    

0 0 0 1 | an1
 an2

  ann


  I | A1, using elementary row operations.

Example: Use Gauss-Jordan elimination to find the inverse of A 

1 2 2

3 0 1

1 1 2

.

1 2 2 | 1 0 0

3 0 1 | 0 1 0

1 1 2 | 0 0 1

R23R1


1 2 2 | 1 0 0

0 6 5 | 3 1 0

1 1 2 | 0 0 1

R3R1


1 2 2 | 1 0 0

0 6 5 | 3 1 0

0 1 0 | 1 0 1

R2R3


1 2 2 | 1 0 0

0 1 0 | 1 0 1

0 6 5 | 3 1 0

R36R1


1 2 2 | 1 0 0

0 1 0 | 1 0 1

0 0 5 | 3 1 6

: U|e .

At this point, we have reduced the original system AX  I to 3 equations Ux  e i

But let’s continue to I|A1 .



R12R2


1 0 2 | 1 0 2

0 1 0 | 1 0 1

0 0 5 | 3 1 6

 1
5
R3


1 0 2 | 1 0 2

0 1 0 | 1 0 1

0 0 1 |  3
5  1

5
6
5

(notice how I am allowing myself to add constant multiples of lower rows to upper rows!)

(also notice how I avoided fractions until the last possible moment)

A1  1
5

1 2 2

5 0 5

3 1 6

.

Always Be Adding

AVOID FRACTIONS!!!

Elementary Matrices: Type 3
Elementary matrix which performs scalar multiplication of i th row by c.

E  e 1  ce i  e n . With E1  e 1  1
c e i  e n

So, if we want to multiply the second column of a 3  3 matrix by 5, we can do so with: E 

1 0 0

0 5 0

0 0 1

.

Verify that

1 0 0

0 1
5 0

0 0 1

is its inverse.

Lemma: Every elementary matrix is nonsingular, and its inverse is also an elementary matrix of the same type.

We now have sufficient results to prove the previously mentioned theorem:

Theorem: Ann has an inverse iff A is nonsingular.

Proof: Gauss-Jordan method reduces nonsingular Ann to In through row operations.

Let E1, ,EN be the corresponding elementary matrices. So: ENEN1E1A  In.

Claim: X  ENEN1E1 is the inverse of A.

We already have that it is the left inverse, furthermore each elementary matrix has an inverse.



Therefore, X is itself invertible: X1  ENEN1E1
1  E1

1E2
1EN

1. 

So, multiplying XA  I on the left by X1 leads to A  X1.

And by previous lemma, we also have X  A1. 

Furthermore, if we substitute A  X1 into , we get the following proposition:

Proposition: Every nonsingular matrix can be written as the product of elementary matrices.

Proposition: If L is a lower triangular matrix with all nonzero entries on the main diagonal,

then L is nonsingular and its inverse L1 is also lower triangular. In particular, if L is lower unitriangular,

so is L1. A similar result holds for upper triangular matrices.

Proof in textbook.

Example: Find the inverse of A 

2 1 2

4 2 3

0 1 1

, if possible, by applying the Gauss-Jordan Method.

2 1 2 | 1 0 0

4 2 3 | 0 1 0

0 1 1 | 0 0 1

R22R1 


2 1 2 | 1 0 0

0 0 1 | 2 1 0

0 1 1 | 0 0 1

R2R3


2 1 2 | 1 0 0

0 1 1 | 0 0 1

0 0 1 | 2 1 0

R1R2


2 0 3 | 1 0 1

0 1 1 | 0 0 1

0 0 1 | 2 1 0

R13R3


2 0 0 | 5 3 1

0 1 1 | 0 0 1

0 0 1 | 2 1 0

R2R3


2 0 0 | 5 3 1

0 1 0 | 2 1 1

0 0 1 | 2 1 0

1R2 & 1R3


2 0 0 | 5 3 1

0 1 0 | 2 1 1

0 0 1 | 2 1 0

1
2
R1



1 0 0 |  5
2

3
2

1
2

0 1 0 | 2 1 1

0 0 1 | 2 1 0

.



Therefore, A1 

 5
2

3
2

1
2

2 1 1

2 1 0

.

Solving Linear Systems with the Inverse

Theorem: If A is nonsingular, then x  A1b is the unique solution to the linear system Ax  b .

Proof: We merely multiply the system (on the left) by A1, which yields x  A1Ax  A1b .

Moreover, Ax  AA1b  b , proving that x  A1b is indeed the solution. 

Example: Solve the following system of linear equations by computing the inverse of its coefficient matrix.

3u  v  2 and u  5v  12.

A 
3 1

1 5

 A1  1
detA

5 1

1 3
 1

16

5 1

1 3

 Ax  b , where x : u,v and b : 2,12.

 x  A1b  1
16

5 1

1 3

2

12


11
8

17
8

.

So, u  11
8 and v  17

8 is the unique solution. 

The LDV Factorization

Theorem: A is regular iff it admits a factorization A  LDV, where L is lower unitriangular,

D is diagonal with nonzero diagonal entries, and V is an upper unitriangular.

In particular, once one has calculated A  LU, then D is a diagonal matrix consisting of the same

diagonal entries as U, that is, the pivots. V is then obtained from U by dividing each row by its pivot.



Proposition: If A  LU is regular, then the factors L and U are uniquely determined.

The same holds for the A  LDV factorization.

Proof in textbook.

Theorem: A is nonsingular iff there is a permutation matrix P such that PA  LDV (permuted LDV factorization),

where L is a lower unitriangular matrix, D is a diagonal matrix with nonzero diagonal entries,

and V is an upper unitriangular matrix.

Proof: Follows directly from "A is nonsingular iff A  LU" and the above proposition.

Example: Produce the LDV or a permuted LDV factorization of A 

2 2 0

4 3 6

0 2 5

.

Recall from a previous example (see above) that we had generated the LU factorization for A as:

A 

1 0 0

2 1 0

0 2 1

2 2 0

0 1 6

0 0 7

 LU.

Generating the diagonal D from U’s pivots: D 

2 0 0

0 1 0

0 0 7

.

Then dividing each of U’s rows by their pivots, we get: V 

1
2  r 1

1  r 2

1
7  r 3



1 1 0

0 1 6

0 0 1

.

Therefore: A 

1 0 0

2 1 0

0 2 1

2 0 0

0 1 0

0 0 7

1 1 0

0 1 6

0 0 1

 LDV.


