MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

4.4 - L'Hospital's Rule \& Intermediate Forms Review:

Recall how we struggled to solve something like $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ if the result of substituting $x \rightarrow a$ into the fraction resulted in $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$? Now that we know more about derivatives, we have a tool to help us with this problem.
L'Hopital's Rule: We can evaluate $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ when we know the following:

- f, g are differentiable.
- On an open interval I that contains a, we have $g^{\prime}(x) \neq 0$ (except possibly at a).
- And either: $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$,
or instead that $\lim _{x \rightarrow a} f(x)= \pm \infty$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$.
(In other words, we have an "indeterminate form" of type $\frac{0}{0}$ or $\frac{ \pm \infty}{ \pm \infty}$).
If these three things are true, then: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
(that is, if the limit on the right side the equation exists (or is ∞ or $-\infty$), then the limit on the left is equal to that same value).

Indeterminate Products: What if $\lim _{x \rightarrow a} f(x) \cdot g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=" 0 \cdot \infty " \quad$?!?
Transform this into a form where you can use L'Hospital's Rule.

$$
\lim _{x \rightarrow a} f(x) \cdot g(x)=\lim _{x \rightarrow a} \frac{f}{\frac{1}{g}}=" \frac{0}{0} " \quad \text { or } \quad \lim _{x \rightarrow a} \frac{g}{\frac{1}{f}}=" \frac{\infty}{\infty} " .
$$

Indeterminate Differences: What if $\lim _{x \rightarrow a}[f(x)-g(x)]=" \infty-\infty " \quad ?!?$
Transform this into a form where you can use L'Hospital's Rule.
You will have to do this using a common denominator (if they are fractions), rationalizing, or factoring out a common factor. The method will be dictated by the specifics of $f(x)$ and $g(x)$ (see examples below).

Indeterminate Powers: What if $\lim _{x \rightarrow a}[f(x)]^{g(x)}=" 0^{0}$ or ∞^{0} or 1^{∞} " ?!?
Either take the natural logarithm, or write the function as an exponential.

$$
\ln y=\ln [f(x)]^{g(x)}=g(x) \ln [f(x)] \quad \text { or } \quad[f(x)]^{g(x)}=e^{\ln [f(x)]^{g(x)}}=e^{g(x) \ln [f(x)]} .
$$

Then try to take your limit to determine the answer: (see examples below).

Problem: 14. Find $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}$. Use L'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If L'Hospital's Rule doesn't apply, explain why.

This limit has the form $\frac{0}{0}$.
$\mathbb{H} \Rightarrow \lim _{x \rightarrow 0} \frac{\left(x^{2}\right)^{\prime}}{(1-\cos x)^{\prime}}=\lim _{x \rightarrow 0} \frac{2 x}{\sin x}$. This limit again has the form $\frac{0}{0}$.
("H्H" means I'm applying L’Hospital's rule)

$$
\mathbb{H} \Rightarrow \lim _{x \rightarrow 0} \frac{(2 x)^{\prime}}{(\sin x)^{\prime}}=\lim _{x \rightarrow 0} \frac{2}{\cos x}
$$

$=\frac{2}{1}=2 . \quad$ Therefore, $\lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}=2$.

Problem: 38. Find $\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x}$. Use L'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If L'Hospital's Rule doesn't apply, explain why.

This limit has the form $\frac{0}{0}$.

$$
\mathbb{H} \Rightarrow \lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{1-\cos x} . \quad \text { This limit has the form } \frac{0}{0}
$$

$$
\mathbb{H} \Rightarrow \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}}{\sin x} . \quad \text { This limit has the form } \frac{0}{0}
$$

$$
\mathbb{H} \Rightarrow \quad \lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}}{\cos x}=\frac{1+1}{1}=2
$$

Problem: 62. Find $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{\frac{1}{x}}$. Use L'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If L'Hospital's Rule doesn't apply, explain why.

Let $y=\left(e^{x}+x\right)^{\frac{1}{x}}$

$$
\ln y=\frac{1}{x} \ln \left(e^{x}+x\right), \text { so } \ldots
$$

$$
\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+x\right)}{x} . \quad \text { This limit has the form } \frac{\infty}{\infty} .
$$

$\Rightarrow \mathbb{H} \Rightarrow \lim _{x \rightarrow \infty} \frac{\frac{1}{e^{x}+x}\left(e^{x}+1\right)}{1}=\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x} . \quad$ This limit has the form $\frac{\infty}{\infty}$.
$\Rightarrow \mathbb{H} \Rightarrow \quad \lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+1} . \quad$ This limit has the form $\frac{\infty}{\infty}$.
$\Rightarrow \mathbb{H} \Rightarrow \lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}}=\lim _{x \rightarrow \infty} 1=1$.

We just found $\lim _{x \rightarrow \infty} \ln y=\lim _{x \rightarrow \infty} \ln \left(e^{x}+x\right)^{\frac{1}{x}}=1$, but we have NOT found $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{\frac{1}{x}}$

However, observe that: $\lim _{x \rightarrow \infty} y=\lim _{x \rightarrow \infty} e^{\ln y}=e^{\left(\lim _{x \rightarrow \infty} \ln y\right)}=e^{1}=e$

Note that we were allowed to bring the limit into the exponential function $e^{\ln y}$. What justifies this?
This is a result of the fact that $\ln y \rightarrow 1$ as $x \rightarrow \infty$, and e^{x} is continuous around $x=1$ (see Theorem 8 in 2.5 regarding limits of continuous functions).

We could actually change the notation somewhat and see this as $\lim _{x \rightarrow \infty} e^{\ln y}=\lim _{x \rightarrow 1} e^{x}=e^{1}=e$.

Problem 65 Find $\lim _{x \rightarrow 0^{+}}(4 x+1)^{\cot x}$. Use L'Hospital's Rule where appropriate. If there is a

 more elementary method, consider using it. If L'Hospital's Rule doesn't apply, explain why.Observe that when you try to apply the limit, you get something of the form 1^{∞} (recall that $\cot x=\frac{\cos x}{\sin x}$, and $\lim _{x \rightarrow 0^{+}} \frac{\cos x}{\sin x}=\frac{1}{0^{+}}=\infty$).

So, from the review we wish to use the Intermediate Powers method. The main purpose of the method is to get rid of the pesky expression in the exponent.

Let $y:=(4 x+1)^{\cot x}$.
Taking the natural \log of both sides: $\ln y=\ln \left((4 x+1)^{\cot x}\right)=\cot x \ln (4 x+1)$.

Now that we have gotten rid of that exponent, we can proceed with attempting to take the limit.

$$
\lim \ln y=\lim \cot x \cdot \ln (4 x+1), \text { which is of the form } \infty \cdot 0 .
$$

$$
x \rightarrow 0^{+} \quad x \rightarrow 0^{+}
$$

So, we must now use the L'Hospital Intermediate Products method to try to solve this.

If we let $f=\cot x$ and $g=\ln (4 x+1)$, we could rewrite this as $\lim _{x \rightarrow 0^{+}} \frac{f}{\frac{1}{8}}$ or $\lim _{x \rightarrow 0^{+}} \frac{g}{\frac{1}{f}}$.

The first one gives us: $\lim _{x \rightarrow 0^{+}} \frac{\cot x}{\ln ^{-1}(4 x+1)}$, and applying L'Hospital (taking the derivative of the numerator and denominator separately, NOT the quotient rule!), we have:

$$
\lim _{x \rightarrow 0^{+}} \frac{-\csc ^{2} x}{-\left(\frac{4}{4 x+1}\right) \ln ^{-2}(4 x+1)}=\lim _{x \rightarrow 0^{+}} \frac{(4 x+1) \ln ^{2}(4 x+1)}{4 \sin ^{2} x} .
$$

However, this looks more complicated than what we started with.
ProTip: With these Intermediate Products problems, if after taking the derivatives things do not get simpler, it's probably best to check out the other option (for us, $\lim _{x \rightarrow 0^{+}} \frac{g}{\frac{1}{f}}$), to see if that works out better.

In our case, that would be: $\lim _{x \rightarrow 0^{+}} \frac{g}{\frac{1}{f}}=\lim _{x \rightarrow 0^{+}} \frac{\ln (4 x+1)}{\tan x}$, and applying L'Hospital, we have:

$$
\lim _{x \rightarrow 0^{+}} \frac{\frac{4}{4 x+1}}{\sec ^{2} x} \rightarrow \frac{\frac{4}{1}}{\frac{1}{\cos ^{2}(0)}}=4 .
$$

But we are not done yet! We have found out that: $\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \cot x \ln (4 x+1)=4$.

However, we were asked to evaluate: $\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}}(4 x+1)^{\cot x}$.

So, to finish off this type of problem, we must notice that $y=e^{\ln y}$ is always true, and so:

$$
\left.\lim _{x \rightarrow 0^{+}} y=\lim _{x \rightarrow 0^{+}} e^{\ln y}=e^{\left(\lim _{x \rightarrow 0^{+}} \ln y\right.}\right)=e^{4} .
$$

(We can do this trick with the limit because exponential functions are continuous everywhere, and therefore we are allowed to pull the limit into the exponent as we did in the 2 nd equation above. See

Theorem 8 in 2.5 regarding limits of continuous functions)

Now I will do a problem like $\lim _{x \rightarrow a}(f-g)$ that has the form " $\infty-\infty$." I will do one that involves factoring out a common factor, since the problems that involve merely finding a common denominator are easy. They are easy, because all you need to do is find the common denominator of f and g, combine f and g under the new denominator, and then proceed with L'Hospital as usual. However, the following problem does not start out as fractions, so we must instead try to factor out a common factor.

Problem 53. Find $\lim _{x \rightarrow \infty}(x-\ln x)$. Use L'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If L'Hospital's Rule doesn't apply, explain why.

The limit has the form $\infty-\infty$, and we will change the form to a product by factoring out an x.

$$
\begin{equation*}
=\lim _{x \rightarrow \infty} x\left(1-\frac{\ln x}{x}\right) \tag{*}
\end{equation*}
$$

To determine what form $(*)$ has, we need to know what $\lim _{x \rightarrow \infty}\left(1-\frac{\ln x}{x}\right)$ is.

Observe that $\lim _{x \rightarrow \infty} \frac{\ln x}{x}$ is of the form $\frac{\infty}{\infty}$, so we can calculate:

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x} \Rightarrow \mathbb{H} \Rightarrow \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1}=0 .
$$

So it must be that $\lim _{x \rightarrow \infty}\left(1-\frac{\ln x}{x}\right)=\lim _{x \rightarrow \infty} 1-\lim _{x \rightarrow \infty} \frac{\ln x}{x}=1-0=1$.

So, going back to $(*)$, we have:

$$
\lim _{x \rightarrow \infty} x\left(1-\frac{\ln x}{x}\right)=\lim _{x \rightarrow \infty} x \cdot \lim _{x \rightarrow \infty}\left(1-\frac{\ln x}{x}\right)=\infty \cdot 1=\infty .
$$

