MATH 1271: Calculus I

Discussion Instructor: Jodin Morey

moreyjc@umn.edu

Website: math.umn.edu/~moreyjc

2.3 - Calculating Limits Using the Limit Laws

Review:

Suppose that c is a constant and the limits $\lim f(x)$ and $\lim g(x)$ exist. Then:

- \bullet $\lim [f \pm g] = \lim f \pm \lim g$
- $\lim_{n \to \infty} [cf] = c \lim_{n \to \infty} f$
- $\lim_{\substack{x \to a \\ \text{lim}}} [f \cdot g] = \lim_{\substack{x \to a \\ \text{lim}}} f \cdot \lim_{\substack{x \to a \\ \text{lim}}} g$ $\lim_{\substack{x \to a \\ \text{lim}}} \frac{f}{g} = \frac{\lim_{\substack{x \to a \\ \text{lim}}} f}{\lim_{\substack{x \to a \\ \text{lim}}} g}, \text{ if } \lim_{\substack{x \to a \\ \text{lim}}} g \neq 0$
- $\lim_{x \to a} g \quad \lim_{x \to a} g, \quad \lim_{x \to a} g \quad \text{where } n \text{ is a positive integer.}$ $\lim_{x \to a} [f]^n = \left[\lim_{x \to a} f\right]^n, \text{ where } n \text{ is a positive integer.}$
- $\lim x^n = a^n$, where *n* is a positive integer.
- $\lim \sqrt[n]{x} = \sqrt[n]{a}$, where *n* is a positive integer (when *n* is even, we also need $a \ge 0$ for real numbers)
- $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$ where n is a positive integer. (when *n* is even, we also need $\lim f(x) > 0$ for real numbers)

Direct Substitution Property: If f is a polynomial or a rational function (i.e. $\frac{\text{polynomial}}{\text{polynomial}}$), and a is in the domain of f, then $\lim f(x) = f(a)$. (this is because these types of functions are continuous on their domain)

- If f(x) = g(x) when $x \neq a$, then $\lim f(x) = \lim g(x)$, provided the limits exist.
- $\oint \lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x). \text{ (two sided limit)}$
- If $f(x) \le g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as $x \to a$, then: $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.

The Squeeze Theorem: If $f(x) \le g(x) \le h(x)$, when x is near a (except possibly at a), and $\lim f(x) = \lim h(x) = L$, then: $\lim g(x) = L$.

A.K.A.: The Two Policemen Theorem:

Problem 15. Evaluate the limit, if it exists: $\lim_{t\to -3} \frac{t^2-9}{2t^2+7t+3}$

$$= \lim_{t \to -3} \frac{(t+3)(t-3)}{(2t+1)(t+3)}$$

$$= \lim_{t \to -3} \frac{t-3}{2t+1}$$

$$= \frac{-3-3}{2(-3)+1} = \frac{-6}{-5} = \frac{6}{5}.$$

Problem 19. Evaluate the limit, if it exists: $\lim_{x\to -2} \frac{x+2}{x^3+8}$

Does denominator have factor of x + 2? Polynomial division!

$$x^3 + 8 = (x+2)x^2 + (-2x^2 + 8)$$
 (*)

$$-2x^2 + 8 = (x+2)(-2x) + (4x+8)$$

$$= (x+2)(-2x) + 4(x+2) = (x+2)(-2x+4).$$

Substituting back into (*). $x^3 + 8 = (x+2)x^2 + (x+2)(-2x+4) = (x+2)(x^2 - 2x + 4)$.

So,
$$\lim_{x \to -2} \frac{x+2}{x^3+8} = \lim_{x \to -2} \frac{x+2}{(x+2)(x^2-2x+4)}$$

=
$$\lim_{x \to -2} \frac{1}{x^2 - 2x + 4}$$
 (-2 is in the domain of this rational function)

$$=\frac{1}{4+4+4}=\frac{1}{12}.$$

$$\frac{x+2}{x^3+8}$$

Problem 21. Evaluate the limit, if it exists: $\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$.

$$= \lim_{h \to 0} \left(\frac{\sqrt{9+h} - 3}{h} \cdot \frac{\sqrt{9+h} + 3}{\sqrt{9+h} + 3} \right)$$

$$= \lim_{h \to 0} \frac{\left(\sqrt{9+h}\right)^2 - 3^2}{h\left(\sqrt{9+h} + 3\right)}$$
 (inverse "difference of squares": $(a - b)(a + b) = (a^2 - b^2)$)

$$= \lim_{h \to 0} \frac{(9+h)-9}{h(\sqrt{9+h}+3)}$$

$$= \lim_{h \to 0} \frac{h}{h(\sqrt{9+h}+3)}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{9+h}+3}$$

$$=\frac{1}{3+3}=\frac{1}{6}.$$

$$\frac{\sqrt{9+h}-3}{h}$$

Problem 25. Evaluate the limit, if it exists: $\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$

$$= \lim_{t \to 0} \left(\frac{\sqrt{1+t} - \sqrt{1-t}}{t} \cdot \frac{\sqrt{1+t} + \sqrt{1-t}}{\sqrt{1+t} + \sqrt{1-t}} \right)$$

$$= \lim_{t \to 0} \frac{\left(\sqrt{1+t}\right)^2 - \left(\sqrt{1-t}\right)^2}{t\left(\sqrt{1+t} + \sqrt{1-t}\right)} = \lim_{t \to 0} \frac{(1+t) - (1-t)}{t\left(\sqrt{1+t} + \sqrt{1-t}\right)} = \lim_{t \to 0} \frac{2t}{t\left(\sqrt{1+t} + \sqrt{1-t}\right)}$$

$$= \lim_{t \to 0} \frac{2}{\left(\sqrt{1+t} + \sqrt{1-t}\right)}$$

$$=\frac{2}{\sqrt{1}+\sqrt{1}}=\frac{2}{2}=1.$$

Problem 38. If $2x \le g(x) \le x^4 - x^2 + 2$ for all x, evaluate $\lim_{x \to 1} g(x)$.

$$\lim_{x \to 1} (2x) = 2(1) = 2.$$

and
$$\lim_{x\to 1} (x^4 - x^2 + 2) = 1^4 - 1^2 + 2 = 2$$
.

 $\lim_{x\to 1} g(x) = 2$ by the squeeze theorem.

$$2x \text{ and } x^4 - x^2 + 2$$

Problem 45. Evaluate: $\lim_{x\to 0^-} \left(\frac{1}{x} + \frac{1}{|x|}\right)$

Since |x| = -x for x < 0,

$$\lim_{x\to 0^-} \left(\frac{1}{x} + \frac{1}{|x|}\right) = \lim_{x\to 0^-} \left(\frac{1}{x} - \frac{1}{x}\right)$$

$$= \lim_{x \to 0^{-}} 0 = 0.$$

$$\frac{1}{x} + \frac{1}{|x|}$$