MATH 1271: Calculus |

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

2.3 - Calculating Limits Using the Limit Laws
Review:

Suppose that ¢ is a constant and the limits lim f(x) and lim g(x) exist. Then:
¢ lim[ftg]= limf+£ limg

¢ lim [¢f] = ¢ lim f
X—=>a X—=>a

¢ lim[f-g]= limf . limg
X—a f hmf X—ia X—a

¢ lim = ﬁ;’g’ if im g = 0

xX-a ot xX-a

¢ lim [f]" = |:1im f} , Where n is a positive integer.

X—>ad X—a

¢ limc=c ¢ imx=a

X—=>a X—=>a

¢ lim x" = 4", where n is a positive integer.

X—>ad

¢ lim yx = ya, where n is a positive integer (when n is even, we also need a > 0 for real numbers)

X—=>a

¢ lim yf(x) = [lim f(x) where n is a positive integer.

X—=>a X—>a

(when n is even, we also need lim f(x) > 0 for real numbers)

X—=>a

Direct Substitution Property: If fis a polynomial or a rational function (i.e. £2ytomal

b

polynomial
and a is in the domain of f, then lim f(x) = f(a).

X—a

(this is because these types of functions are continuous on their domain)

¢ If f(x) = g(x) when x # a, then lim f(x) = lim g(x), provided the limits exist.

X—=>a X—=>a

¢ lim f(x) = Lifand only if lim fix) = L = lim f(x). (two sided limit)

X—a x—a-

¢ If fx) < g(x) when x is near a (except possibly at @) and
the limits of fand g both exist as x - 4, then: lim f(x) < lim g(x).

X—=>a X—=>a

The Squeeze Theorem: If f(x) < g(x) < h(x), when x is near a (except possibly at a),
and lim f(x) = lim h(x) = L, then: lim g(x) = L.

X—=>a X—=>a X—=>a



h(x)

g(x)

v 0
A.K.A.: The Two Policemen Theorem: R

;

Problem 15.  Evaluate the limit, if it exists: lim ——=2—
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Problem 19. Evaluate the limit, if it exists: lim %

x—>—2



Does denominator have factor of x + 2?7 Polynomial division!

X +8=(x+2)x*+ (-2x2+38) (%)

“2x2+8 = (x+2)(-2x) + (4x + 8)
=(x+2)(2x)+4(x+2) = (x+2)(—2x+4).

Substituting back into (x). B +H8=(x+2)x2+(x+2)(-2x+4) = (x+2)(x2 - 2x + 4).

So, lim =2 = lim ———x2
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Problem 21.  Evaluate the limit, if it exists: lim 2=
h-0
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Problem 25.  Evaluate the limit, if it exists: lim {1
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Problem 38. If 2x < g(x) < x* — x? + 2 for all x, evaluate lim g(x).

x—1

lim (2x) = 2(1) = 2.

x—1

and lim (x* —x?>+2) = 14-12+2 = 2.

x—1

lim g(x) = 2 by the squeeze theorem.

x—1

\_

2x and x* —x2 + 2

Problem 45.  Evaluate: lim (L + L)

x-0~

Since Ix| = —x for x < 0,



lim (++L) = lim (+-1
x—-0~ x—0~
= lim 0 = 0.
x->0"
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