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10.4 Areas and Lengths in Polar Coordinates
Review:
Recall that the area of a sector of a circle is A � 1

2
r2� where � is the angle defining the sector.

We wish to determine the area swept out by the ray connecting the origin �0, 0� to our polar curve r � f��� as
� increases from �0 � a to �f � b. We do it similarly to how we estimated the area under the curve using a
Riemann approximation. We divide up the interval �a, b� into n segments. Then, adjusting our area formula
above, we have:
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Note that the above works for positive continuous f���, and intervals �a, b� that are less than 2�. Determining
the area for situations that fall outside these criteria is similarly achieved, but just requires a few slight
alterations. Think about what these alterations might be!

Arc Length
The polar arc length of r � f��� over a � � � b is determined by altering the arc length rule from 10.2. Find

the exact derivation in your text, but the result is: L � �
a

b
r2 � dr
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2
d�.

Problem #2 Find the area of the region that is bounded by the curve r � cos� and lies in the sector 0 � � � �
6

.
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Problem #6 Find the area of the region defined by the curve r � 1 � cos�, with 0 � � � �.
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Problem #10 Sketch the curve r � 1 � sin�, and find the area that it encloses.
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Problem #18 Find the area of the region enclosed by one loop of the curve r2 � sin 2�.
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the loop in the first quadrant is traced out by r � sin 2� .
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Problem #24 Find the area of the region that lies inside the curve r � 1 � sin� and outside the curve r � 1.
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Problem #48 Find the exact length of the polar curve r � 2�1 � cos��.
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